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INntroduction

* [nformational speech tactorization
* Why generative mode|

* Why discriminative normalization flow



VAE and NF

e VVAE £0.9)= Y, £ax) < 2, logp(x) = L0.9)

e ELBO
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Figure 3: Distribution transform with normalization flow.
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Figure 5: The DNF architecture, where each class has its u-
nique prior distribution.

* SUpGFViSiOﬂ log p(x) = log N'(z; pyyy. I) + J (),



Factorial DNF

* Take more than one information factors
INto consideration. (two factors as example)

* split the latent code Into two partial codes
(different dimensions).  z = [z* z5)

* The two codes are iIndependent because of
the prior's diagonal Gaussian.

p(z) = p(zh)p(z?),



Factorial DNF

p(z*) = N(z*; Hy (1)
p(z®) = N2 uy . 1)

p(z) = p(z*)p(z®),

lgg p{x} . l'Dg P{E} + . J{3x).

log p(x) = log p(z*) + log p(z®) + J(x).



Experimental settings
Data

TIMIT, 462 speakers in training set, the original 58
phones are mapped to 39 phones(using 38 phones
without ‘sil’, which is ‘silence’) by Kaldi's phone mapping
tool.

Phone segments with a 200ms duration, guaranteeing
that main phones are in the middle of these segments.

4000 dimensions, 20 x 200 time-frequency
spectrograms, where 20 I1s the number of frames in the
segment, and 200 Is the number of frequency bins.



Experimental settings
Model training

VAE involves three convolutional layers followed by a
fully connected layers, and the dimension of the latent
space I1s 128

NF, DNF and f-DNF models follow the RealNVP
structure, there are 6 blocks in every model, and each
block has a coupling layer and a batch norm layer.

Class means of DNF and f-DNF are initialized by O-|
normal distribution, and within variances are set as 1.0.

Fach partial codes of f-DNF has 2000 dimensions.



Speech encoding

Phone class means as representations
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Speech encoding

Speaker class means as representations
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Speech encoding

Phone class mean distance
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Speech encoding

Speaker class mean distance
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Speech encoding

Phone class likelihood

(Between-class likelihood)
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Each column represents a class of data, and each row
represents a class distribution



Speech encoding

Speaker class likelihood
Between-class likelihood
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Speech encoding

Recognition

* Top-1log(p(z))
* Short-term phone and

long-term speaker
iInformation bias

* Speaker verification
based on average
ikelihood of K'sequential
segments

Table 1
Accuracies of phone recognition and speaker verification on
VAE, NF, DNF.

WVAE MNF DNF
Phone 05289 0.51492 0.9986
Speaker (K=1) 0.3567 0.2085 0.0318
Speaker (K=3) Q.7242 0.6051 0.9963
Speaker (K=5) 08700 0.7555 0.9991
Speaker (K=10) 0.9822 0.91497 1.0




Speech factorization

Class means as representations
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Different speakers with /aa/ Different speakers with /iy/




Speech factorization

Class means as representations
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Different phones with a female Different phones with a male
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Speech factorization

Class mean distance
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Speech

Class like

factorization
Ihood
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Speech factorization

Class discrimination (tSNE)

(a) VAE (b) NF (c) Phone DNF (d) Speaker DNF (e) Factorial DNF 40 speakers

(f) VAE (g) NF (h) Phone DNF (i) Speaker DNF (j) Factorial DNF 40 speakers



Speech factorization

Phone and speaker v’ = f(F7H (@) + paer = Hae).

Table 1. Posteriors on the target class before and after

conversion phone/speaker conversion.
o - Phone Manipulation
Posteriors from mip T e
° VAE 0.0345 0.3724 0.6117 0.4915
38 phOﬂeS & 40 NF 0.0726  0.2357  0.6117 0.4086
speakers; 4/5 DNF 0.0277 04161 0.6117 0.5289
Factorial DNF | 0.0375 0.3510  0.6117 0.5627
Segments for mlp Speaker Manipulation
training and 1/5 Model p(s2|z) p(s2|z’)  plglx) plq|x’)
VAE 0.0330  0.3903  0.5203 0.5134
Segmen.ts for NF 0.0124  0.5805 0.5203 0.3871
conversion and mlp DNF 0.0108  0.6060 0.5203 0.3809

Factorial DNF | 0.0295  0.4804 0.5203 0.5051

test




Speech factorization

Speaker conversion example

* (Converting a Speech Xa spoken by
speaker g to Xb which sounds like
coming from speaker b.

HS,a = %ﬂ Xt: zaS,t-

As = psp—US,a

Zep = [th 25+ Ag).

(c) Converted speech X,



Discussions

* The phone factor code and speaker factor
code are not fully independent.

* Dimension splitting makes differences.

* The two codes couldn’t get the best /
performance at the same time.

* Discrimination of each code space Is not so
good as we hoped.



summary

* [nformational speech factorization by
factorial DNF Is feasible, but there remain
some problems to be solved.



