Informational Speech Factorization

by Factorial Discriminative Normalization Flow

Introduction

Informational speech factorization

Why generative model

Why discriminative normalization flow

VAE and NF

•
$$\bigvee \triangle \sqsubseteq$$
 $\tilde{\mathcal{L}}(\theta, \phi) = \sum_{i} \tilde{\mathcal{L}}(\mathbf{x}_{i}) \leq \sum_{i} \log p(\mathbf{x}_{i}) = \mathcal{L}(\theta, \phi).$

- ELBO
- Information loss

Figure 3: Distribution transform with normalization flow.

DNF

Figure 5: The DNF architecture, where each class has its unique prior distribution.

Supervision

$$\log p(x) = \log \mathcal{N}(z; \mu_{y(x)}, I) + J(x),$$

Factorial DNF

- Take more than one information factors into consideration. (two factors as example)
- split the latent code into two partial codes (different dimensions). $z = [z^A z^B]$
- The two codes are independent because of the prior's diagonal Gaussian.

$$p(z) = p(z^A)p(z^B),$$

Factorial DNF

$$\begin{aligned} p(\mathbf{z}^A) &= \mathcal{N}(\mathbf{z}^A; \boldsymbol{\mu}_{\boldsymbol{y}_A(\mathbf{z})}, \boldsymbol{I}) \\ p(\mathbf{z}^B) &= \mathcal{N}(\mathbf{z}^B; \boldsymbol{\mu}_{\boldsymbol{y}_B(\mathbf{z})}, \boldsymbol{I}) \end{aligned}$$

$$p(z) = p(z^A)p(z^B),$$

$$\log p(x) = \log p(z^A) + \log p(z^B) + J(x).$$

$$\log p(x) = \log p(z) + J(x).$$

Experimental settings

Data

- TIMIT, 462 speakers in training set, the original 58
 phones are mapped to 39 phones(using 38 phones
 without 'sil', which is 'silence') by Kaldi's phone mapping
 tool.
- Phone segments with a 200ms duration, guaranteeing that main phones are in the middle of these segments.
- 4000 dimensions, 20 × 200 time-frequency spectrograms, where 20 is the number of frames in the segment, and 200 is the number of frequency bins.

Experimental settings

Model training

- VAE involves three convolutional layers followed by a fully connected layers, and the dimension of the latent space is 128
- NF, DNF and f-DNF models follow the RealNVP structure, there are 6 blocks in every model, and each block has a coupling layer and a batch norm layer.
- Class means of DNF and f-DNF are initialized by 0-I normal distribution, and within variances are set as 1.0.
- Each partial codes of f-DNF has 2000 dimensions.

Phone class means as representations

Speaker class means as representations

Phone class mean distance

VEA NF DNF

Speaker class mean distance

Phone class likelihood

(Between-class likelihood)

VEA NF DNF

Each column represents a class of data, and each row represents a class distribution

Speaker class likelihood (Between-class likelihood)

VEA NF DNF

Recognition

- Top-1 log(p(z))
- Short-term phone and long-term speaker information bias
- Speaker verification based on average likelihood of Ksequential segments

Table 1
Accuracies of phone recognition and speaker verification on VAE, NF, DNF.

· 	VAE	NF	DNF
Phone	0.5289	0.5192	0.9986
Speaker (K=1)	0.3567	0.2985	0.9318
Speaker (K=3)	0.7242	0.6051	0.9963
Speaker (K=5)	0.8766	0.7555	0.9991
Speaker (K=10)	0.9822	0.9197	1.0

Class means as representations

Different speakers with /aa/

Different speakers with /iy/

Class means as representations

Different phones with a female

Different phones with a male

Class mean distance

Phones Speakers

Class likelihood

Phones Speakers

Class discrimination (tSNE)

Phone and speaker conversion

- Posteriors from mlp
- 38 phones & 40 speakers; 4/5 segments for mlp training and 1/5 segments for conversion and mlp test

$$x' = f(f^{-1}(x) + \mu_{A,c2} - \mu_{A,c1}).$$

Table 1. Posteriors on the target class before and after phone/speaker conversion.

,	Phone Manipulation				
Model	p(q2 x)	p(q2 x')	p(s x)	p(s x')	
VAE	0.0345	0.3724	0.6117	0.4915	
NF	0.0726	0.2357	0.6117	0.4086	
DNF	0.0277	0.4161	0.6117	0.5289	
Factorial DNF	0.0375	0.3510	0.6117	0.5627	
	Speaker Manipulation				
Model	p(s2 x)	p(s2 x')	p(q x)	p(q x')	
VAE	0.0330	0.3903	0.5203	0.5134	
NF	0.0124	0.5805	0.5203	0.3871	
$\overline{\text{DNF}}$	0.0108	0.6060	0.5203	0.3809	
Factorial DNF	0.0295	0.4804	0.5203	0.5051	

Speaker conversion example

 Converting a Speech Xa spoken by speaker a to Xb which sounds like coming from speaker b.

$$\mu_{S,a} = \frac{1}{T_a} \sum_{t} z_{a,t}^S.$$

$$\Delta_S = \mu_{S,b} - \mu_{S,a}$$

$$z_{c,t} = [z_{a,t}^{Q} \ z_{a,t}^{S} + \Delta_{S}].$$

(a) Original speech X_a

(b) Sample speech for target speaker X_b

(c) Converted speech X_c

Discussions

- The phone factor code and speaker factor code are not fully independent.
- Dimension splitting makes differences.
- The two codes couldn't get the best performance at the same time.
- Discrimination of each code space is not so good as we hoped.

Summary

 Informational speech factorization by factorial DNF is feasible, but there remain some problems to be solved.