Cycle-Loss based Exemplar Autoencoder for Voice Conversion

Weida Liang 2021.11.10

Exemplar Autoencoder

Encoder

Decoder

Vocoder

Kangle Deng, Aayush Bansal, Deva Ramanan, "UNSUPERVISED AUDIOVISUAL SYNTHESIS VIA EXEMPLAR AUTOENCODERS" in ICLR 2021

Compressibility of Audio Speech

• Speech contains two types of information: x = f(s, w)

• (i) content(large variance) (ii) style(little variance)

- Human Acoustics:
 - $Error(f(s_1, w_0), f(s_2, w_0)) \leq Error(f(s_1, w_0), f(s_2, w)), \forall w \in W$
- Autoencoder for Style Transfer:
 - $D(E(\hat{x})) \approx argMin_{t \in M} Error(t, \hat{x}) = argMin_{t \in M} Error(t, f(s_1, w)) \approx f(s_2, w)$
 - M is the manifold spanning a particular style s_2 .
 - Given sufficiently small bottlenecks, autoencoders can project out-of-sample points into the input subspace, so as to minimize the reconstruction error of the output.

Properties

- Pros
 - A simple autoencoder framework(CNN+BI-LSTM)
 - Data-efficient and zero-shot
 - given a target speech with a particular, learn an autoencoder specific to that target speech
- Cons
 - Bad performance on cross-gender task
 - the content from the bottleneck and the speaker style from the weights are not purely factorized.

- **1st round encoding**: Firstly encode S¹ and S², resulting in two sets of factors: $Z^1 = \{Z_r^1, Z_f^1, Z_c^1, Z_t^1\}$ and $Z^2 = \{Z_r^2, Z_f^2, Z_c^2, Z_t^2\}$.
- Random factor substitution (RFS): Randomly choose a factor from Z², and use it to replace the corresponding factor in Z¹. Suppose that the selected factor is Z_f^2 , we get a new factor set Z' = { Z_r^1 , Z_f^2 , Z_c^1 , Z_t^1 }.
- **Speech reconstruction**: Forward Z' to the decoder and produce the reconstructed speech Ŝ'.
- 2nd round encoding: Encode \hat{S}' and obtain $\hat{Z}' = {\hat{Z}_r', \hat{Z}_r', \hat{Z}_r', \hat{Z}_r'}$.
- The cycle loss is computed as: $\mathcal{L}_{cyc} = ||m{Z}' \hat{m{Z}}'||^2$
- The final loss: $\mathcal{L} = \mathcal{L}_{rec} + \alpha * \mathcal{L}_{cyc}$

Ist round encoding and reconstruction for the original utterances.

- Random factor substitution and speech reconstruction of the substituted factors.
- ---> 2nd round encoding for the speech recovered from the substituted factors.

Haoran Sun, Chen Chen, Lantian Li, Dong Wang, "CYCLEFLOW: PURIFY INFORMATION FACTORS BY CYCLE LOSS "in ICASSP 2021

Cycle loss based Exemplar Encoder

- **1st round encoding**: Firstly convert x1 and x2 into spectrum m1 and m2; encode into latent space. Save latent features as c1 and c2.
- Speech reconstruction: Construct two decoders specific to speaker s1 and s2. Forward c1 and c2 to the decoder and produce the reconstructed spectrum m1_hat and m2_hat.
- **2nd round encoding**: Forward c1 and c2 separate to decoder2 and decoder1; then encode through common encoder again for latent features $\overline{c1}$ and $\overline{c2}$

Loss:
$$L_{cycle} = L_2(c1, \overline{c1}) + L_2(c2, \overline{c2})$$
$$L_{spec} = E ||m1 - m1_{hat}||_1 + E ||m2 - m2_{hat}||_1$$
$$L = \alpha * L_{cycle} + L_{spec}$$

Check latent code to verify a best encoder

- We extract the content code from the output of the encoder and use this code for a further test.
- First, we choose six phones from the same speaker of the training period, each of which consists of 6 samples.
- Then set these phones as input into the autoencoder, and we can get the latent codes of these phones.
- Use tSNE to observe the clustering capibility of the phones. The dimension of the output of TSNE is 2.

Theoretical Analysis

- Define $x_1 = \{c_1, s_1\}$ for a speech of Spk1, where c_1 refers to content and s_1 refers to style. Same for Spk2.
- In an autoencoder, a reconstruction process refers to D(E(x))
- For two encoders $D_1 \& D_2$ specific for Spk1 and Spk2, further suppose $D_1(E(x_1)) = \widehat{x_1}$ for matched speech and decoder; $D_2(E(x_1)) = \overline{x_1}$ for mismatched speech and decoder.
- Then $||x_1 \widehat{x_1}||^2 \rightarrow ||E(x_1) E(\widehat{x_1})||^2 = ||c_1 \widehat{c_1}||^2 + ||s_1 \widehat{s_1}||^2$,
 - $\operatorname{argmin}_{\widehat{x_1}} ||x_1 \widehat{x_1}||^2 = \operatorname{argmin}_{\widehat{x_1}} ||D_1(E(x_1)) \{c_1, s_1\}||^2 = \{c_1, \widehat{s_1}\}$. When training decoder1 with Spk1 speech, we have $\widehat{s_1} = s_1$, which means decoder1 has a manifold of s_1 .
 - $\operatorname{argmin}_{\widehat{x_2}} ||x_2 \widehat{x_2}||^2 = \operatorname{argmin}_{\widehat{x_2}} ||D_2(E(x_2)) \{c_2, s_2\}||^2 = \{c_1, \widehat{s_2}\}$. When training decoder2 with Spk2 speech, we have $\widehat{s_2} = s_2$, which means decoder2 has a manifold of s_2 .
- While $||x_1 \overline{x_1}||^2 \rightarrow ||E(x_1) E(\overline{x_1})||^2 = ||c_1 \overline{c_1}||^2 + ||s_1 \overline{s_1}||^2$
 - $argmin_{\overline{x_1}} ||E(x_1) E(\overline{x_1})||^2 = argmin_{\overline{x_1}}(||c_1 \overline{c_1}||^2 + ||s_1 \overline{s_1}||^2) = \{c_1, s_1\}$
 - With cycle loss, we are training a weaker decoder at a compensate for a stronger encoder .

Multi-Step Training

• **1st step**: Introduce cycle loss for a stronger encoder.

LOSS: $L_{cycle} = L_2(c1, \overline{c1}) + L_2(c2, \overline{c2})$ $L_{spec} = E ||m1 - m1_{hat}||_1 + E ||m2 - m2_{hat}||_1$ $L = \alpha * L_{cycle} + L_{spec}$

• **2nd step**: Fix the encoder and finetune the decoder for an autoencoder for a specific speaker.

Dataset and Configurations

- Training: A male speaker and a female speaker in AIShell dataset.
 Speech length: 24:26(male) 26:53(female)
- Test: 6 speakers in AlShell dataset.
- The speakers and utterances in the training and test sets are not overlapped.
- Use TSNE to select a qualified encoder for decoder finetune.

Experiments

- 1. A comparison between not finetuned models with cycle loss and without cycle loss.
- 2. A comparison between decoder-finetuned models with cycle loss and without cycle loss.

Not Finetuned Models (With Griffinlim)

Conclusion1 : cycle-loss model does not have a better performance if not finetuned

Finetuned Models (With Wavenet)

Conclusion2 : cycle-loss model has a better performance if finetuned

Conclusion and Prospect

- 1. We proposed an improved autoencoder with multi-step training based on cycle loss.
- 2. We demonstrated theoretically and empirically that multi-step training has a better performance on cross-gender issue, while the model without finetune cannot reach that performance.
- 3. The proposed model preserved the advantage of simplicity in baseline.
- Future work:
 - Test for different IB dimensions.
 - Test for multi-step training with more speakers