Audio-Visual Learning

HaoYu Jiang 2022/09/23

Learning Lip-Based Audio-Visual Speaker Embeddings with AV-HuBERT

- Task
 - self-supervised pre-training for audiovisual speaker representation learning
- Motivation
 - several analyses observed that AV-HuBERT still learn rich speaker information especially in earlier layers
- Methods

Figure 1: AV-HuBERT for learning speaker embedding. Dashed box: added during fine-tuning.

Learning Lip-Based Audio-Visual Speaker Embeddings with AV-HuBERT

• Experiments

Table 1: SV performance on clean and noisy test sets when fine-tuned with various VC2 subsets. The EER averaged over 20 setups (5 SNRs \times 4 types) is reported for the noisy test sets.

DT	FT	Mod	VC2 E	VC2 EER (%)		VC1 EER (%)		
11	11	Mod.	clean	noisy	clean	noisy		
None		A	26.8	39.2	25.1	39.2		
None	VC2-15spk	AV	29.8	35.9	24.6	28.7		
VC2+LRS3	(5h)	A	23.3	33.9	20.0	33.0		
VC2+LRS3		AV	22.6	28.0	19.4	21.9		
None		Α	18.5	34.5	16.1	34.6		
None	VC2-156spk	AV	16.4	24.7	13.1	17.7		
VC2+LRS3	(50h)	A	11.8	28.9	9.4	29.1		
VC2+LRS3		AV	9.3	18.8	7.8	12.5		
None		A	11.1	31.6	8.6	30.5		
None	VC2-1200spk	AV	9.3	17.6	7.0	9.9		
VC2+LRS3	(485h)	A	7.2	26.1	4.9	25.2		
VC2+LRS3		AV	5.7	12.6	3.8	6.1		
None		A	24.4	39.4	21.7	39.5		
None	VC2-5h	AV	32.8	41.0	30.2	40.3		
VC2+LRS3	(1740spk)	A	20.1	34.7	17.7	34.5		
VC2+LRS3		AV	16.7	28.6	13.9	23.0		
None		A	20.2	35.5	16.1	34.7		
None	VC2-50h	AV	21.5	26.3	15.7	16.4		
VC2+LRS3	(5113spk)	Α	10.7	29.7	8.0	28.7		
VC2+LRS3		AV	7.4	19.8	4.8	11.4		
None		A	10.6	33.1	8.0	31.4		
None	VC2-500h	AV	6.5	14.5	5.3	7.8		
VC2+LRS3	(5992spk)	A	4.9	23.7	3.0	22.8		
VC2+LRS3		AV	3.7	9.2	1.7	3.9		
None		A	7.3	29.2	5.1	27.8		
None	VC2	AV	5.1	11.3	2.9	4.7		
VC2+LRS3	(5994spk)	A	3.4	20.9	1.9	20.0		
VC2+LRS3		AV	2.4	7.8	1.0	2.5		

Table 2: AV-HuBERT fine-tuned on VC2-500h with audio (A) or audio-visual (AV) input, with or without noise augmentation. The abbreviations used are B: Babble, S: Speech, M: Music, and O: Other.

Noise	Noise	A, \	CI EE	R (%), S	SNR (dl	B)=	AV, 1	VCI E	ER (%), SNR	(dB)=
Aug?	Туре	-10	-5	0	5	10	-10	-5	0	5	10
	В	48.2	36.4	18.5	9.6	6.0	4.4	3.9	3.4	2.6	2.2
N	S	48.8	46.5	36.5	18.3	8.5	8.6	6.8	4.8	3.4	2.5
IN	Μ	39.3	26.9	14.5	8.3	5.5	6.2	4.3	3.1	2.4	2.0
	0	34.0	23.3	13.7	8.8	5.9	6.0	4.3	3.2	2.6	2.3
	В	48.1	27.2	12.7	7.3	5.2	3.4	3.2	2.5	2.2	2.0
V	S	24.4	14.9	11.8	12.3	9.6	3.2	2.8	2.6	2.3	2.0
1	M	27.3	14.3	8.2	5.6	4.4	3.5	2.8	2.4	2.0	1.8
	0	23.6	13.0	8.0	5.8	4.7	3.1	2.6	2.3	2.1	2.0

Table 3: Comparing different input. AV-HuBERT is fine-tuned on VC2-500h.

Model	Input	VC2 EER (%)
AV-HuBERT	audio + face video	2.8
AV-HuBERT	audio + lip video	3.7

Learning Lip-Based Audio-Visual Speaker Embeddings with AV-HuBERT

• Results

Table 4: (Top) Comparison with the prior work following the SUPERB fine-tuning protocol. Models are fine-tuned on VC1. (Bottom) Comparison with prior work that does not follow the SUPERB evaluation protocol.

Mathad	P	Г	Ma		VC1			
Method	Da	ta	IVIO	u. S	C-Acc	SV-EER		
FBANK [15]	-		A	8	.5E-4	9.56		
wav2vec2-B [1:	5] LS (96	50 hr	A		75.18	6.02		
HuBERT-B [15	5] LS (96	60 hr)	A	8	31.42	5.11		
WavLM-B [25	Mix (9	4k hr)	A	8	39.42	4.07		
wav2vec2-L [15	5] LL (60)k hr)	A		86.14	5.65		
HuBERT-L [15	1 LL (60)k hr)	A		0.33	5.98		
WavLM-L [25] Mix (9	4k hr)	A	9	95.49	3.77		
AV-HuBERT-E	3		A	1	30.99	5.85		
AV-HuBERT-E	3 VC2+1	LRS3	AV		93.90	4.85		
AV-HuBERT-I	(2.8k	(2.8k hr)			91.56	4.42		
AV-HuBERT-I		a.	AV		98.06	2.95		
Method	PT Data	FT Data	Mod.	VC1 SC-Ac	vC1 c SV-EE	VC2 R SV-EER		
Nagrani et al. [18]	20% VC2	VC1	AV	-	9.43	-		
WavLM-L [25]	Mix (94k hr)	VC2	A	-	0.38	-		
Shon et al. [32]	-	VC2	AV		<u></u>	5.29		
Unimodal [33]	-	VC2	A	-	2.2	3.5		
Multi-view [33]	200	VC2	AV	-	1.8	2.4		
Feature Fusion [33]	-	VC2	AV	3 - 3	1.4	2.0		
Ensemble [33]	2 <u>0</u> 20	VC2	AV	1.1	0.7	1.6		
AV-HuBERT-B		VC2	А	-	1.92	3.43		
AV-HuBERT-B	VC2+LRS3	VC2	AV	-	1.00	2.41		
AV-HuBERT-L AV-HuBERT-L	(2.8k hr)	VC2 VC2	A AV	-	1.71 0.84	3.11 2.29		

- Motivation
 - Unlike works that simply focus on the lip motion, we investigate the contribution of entire visual frames (visual actions, objects, background etc.)
- Methods
 - AudioVisual ASR TrAnsformeR (AVATAR)
 - Audiovisual Encoder: MBT architecture, a transformer based multimodal encoder.
 - Decoder: auto-regressive transformer decoder consisting of 8 layers and 4 attention heads.

Figure 1: AVATAR: We propose a Seq2Seq architecture for audio-visual speech recognition. Our model is trained end-to-end from RGB pixels and spectrograms.

- VisSpeech Dataset
 - a subset of the publicly released HowTo100M dataset, and is curated using a combination of automatic filtering stages and manual verification.
 - VisSpeech consists of 508 segments from 495 unique videos.
 - with the audio containing background chatter, laughter, music and other environmental sounds.
 - many examples contain speech spoken with challenging English accents from various regions all over the world.

Results

Table 1: Audiovisual ASR vs Audio only models under various evaluation noise conditions (Clean, Burst, Environment and Mixed) and with different training masking strategies (Random and Content). Percentage Word Error Rate (%WER) is reported on the How2 test set. A: Audio-only. A+V: Audiovisual. Rel. Δ : Relative improvement of A+V over A.

Eval Noise Clean					Burst Loss			Environment Noise			Mixed Noise		
Training	A	A+V	Rel. Δ	Α	A+V	Rel. Δ	Α	A+V	Rel. Δ	Α	A+V	Rel. Δ	
No Pretraining	15.72	15.62	0.64%	29.59	28.69	3.05%	50.79	47.70	6.08%	60.51	57.49	5.0%	
Vanilla	9.75	9.79	-0.33%	21.97	21.71	1.19%	25.97	25.55	1.61%	39.13	38.96	0.42%	
Random Word Masking	9.19	9.11	0.93%	15.60	15.28	2.05%	23.39	22.35	4.45%	32.43	30.64	5.50%	
Content Word Masking	9.58	9.25	3.48%	17.26	16.92	1.98%	23.77	22.67	4.65%	33.83	32.26	4.53%	

• Results

Table 2: Comparison to the state-of-the-art on How2. Our model outperforms all previous works when trained from scratch, and pretraining provides a significant boost. We report the best audio-visual numbers for all works.

Model	%WER
BAS [10]	18.0
VAT [11]	18.0
MultiRes [17]	20.5
LLD [13]	16.7
AVATAR (scratch)	15.6
AVATAR (pretrained)	9.1

Table 3: WERs of AVATAR on our newly introduced test set VisSpeech consisting of real-world noise. The models are trained on automatic ASR from HowTo100M, and finetuned on How2. Note here we do not add any artificial audio degradation at all.

Training Strategy	A	A+V	Rel. Δ
No pretraining	44.57	43.41	2.61%
Vanilla	12.69	11.91	6.11%
Random Word Masking	12.35	11.86	3.93%
Content Word Masking	12.72	11.28	11.30%

GT: this dessert definitely deserves a happy dance A: this deserves definitely deserves a happy dance AV: this dessert definitely deserves a happy dance

GT: the thumb reaches for the coin A: the thumb reaches for the con AV: the thumb reaches for the coin

GT: this is a globe eggplant it's a small one A: this is a glow big plant it's a small one AV: this is a globe eggplant it's a small one

GT: and repeat the same fold for the opposite side A: and repeat the simple for the opposite side AV: and repeat the same fold for the opposite side

Figure 2: *Qualitative results on the VisSpeech dataset.* We show the ground truth (GT), and predictions from our audio only (A) and audio-visual model (A+V). Note how the visual context helps with objects ('desert', 'coin', 'eggplant'), as well as actions ('fold') which may be ambiguous from the audio stream alone. Errors in the predictions compared to the GT are highlighted in red.

- Motivation
 - Unlike most existing audio-visual methods, our audio-visual model takes audio features (e.g., FBANKs), multi-speaker lip regions of interest (ROIs), and multi-speaker i-vector embbedings as multimodal inputs
- Methods

Figure 1: The illustration of network structure

• Results

Set Reference VAD		DEV						EVAL					
			2	with	w/o	with				w/o			
Modality	System	FA	MISS	SpkErr	DER	DER	FA	MISS	SpkErr	DER	DER		
Andia	VBx	0.00	25.79	7.56	33.35	40.21	0.00	26.25	7.44	33.69	40.82		
Audio	TS-VAD	4.30	11.94	11.67	27.91	1 3	4.27	12.77	11.92	28.95	-		
Visual	VSD	4.91	6.74	2.94	14.59	20.63	4.20	6.60	2.28	13.07	19.64		
	¹ AVSD w/o i-vector	3.60	5.06	2.38	11.04	-	2.35	5.90	1.80	10.05	-		
Audio-Visual	² AVSD with i-vector	3.41	5.05	2.10	10.57	-	3.07	5.39	1.56	10.01	-		
	³ + Joint training	3.32	4.67	2.14	10.12	11.68	2.96	4.97	1.56	9.49	10.99		
Fusion	DOVER-Lap of 1, 2, 3	2.98	4.68	2.05	9.71	(4)	2.38	5.09	1.38	8.85	140		

Table 1: Diarization results on MISP

diarization error rate (DER) which is calculated as: the summed time of three different errors of false alarm (FA), missed detection (MISS) and speaker errors (SpkErr) divided by the total duration time.

Figure 3: An example including lip wiggling and lip missing problems in audio-visual recording.

Thanks