Towards End-to-end Unsupervised Speech Recognition

李思瑞

2022-07-15

Completely Unsupervised Speech Recognition By A Generative Adversarial Network Harmonized With Iteratively

Refined Hidden Markov Models

Algorithm 1: GAN/HMM Harmonization

Input: Real phoneme sequences P^{real} , Speech utterances, initial phoneme segmentation boundaries b

Output: Unsupervised ASR system

while not converged do

Given b, in an unsupervised way train the GAN;

Obtain transcriptions T of speech utterances using the generator within the GAN;

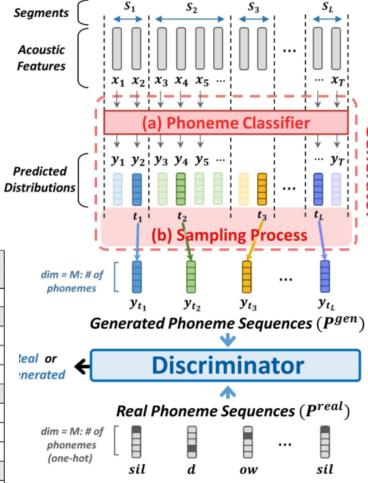
Given T, train the HMMs;

Obtain a new b by forced alignment with the HMMs.

Discriminator loss

$$\mathcal{L}_{D} = \frac{1}{K} \sum_{k=1}^{K} D(P^{gen(k)}) - \frac{1}{K} \sum_{k=1}^{K} D(P^{real(k)}) + \alpha \mathcal{L}_{gp}, (1)$$

$$\mathcal{L}_{gp} = \frac{1}{K} \sum_{k=1}^{K} (||\nabla D(P^{inter(k)})|| - 1)^2,$$
 (2)


Generator loss

$$\mathcal{L}_{intra} = \frac{1}{K} \sum_{k=1}^{K} \sum_{i,j \in \mathbf{S}_k} (y_i - y_j)^2,$$
 (3)

$$\mathcal{L}_G = -\frac{1}{K} \sum_{k=1}^K D(P^{gen(k)}) + \lambda \mathcal{L}_{intra}, \tag{4}$$

Table 1: Comparison of different methods

			Mat	ched	Nonmatched				
	Appro	(all 4	(000	(3000/1000)					
			FER	PER	FER	PER			
		(I) Supervised	(labeled))					
(a)]	RNN Transdu	cer [22]	-	17.7	-	-			
(b)	standard HMN	Иs	-	21.5	-	-			
(c)]	Phoneme class	27.0	28.9	-	-				
(II) Unsupervised (with oracle boundaries)									
(d)	(d) Mapping relationship GAN [21]			40.2	43.6	43.4			
(e) :	(e) Segmental empirical-ODM [22]			32.5	40.0	40.1			
(f) I	(f) Proposed: GAN			28.5	32.7	34.3			
	(III) Completely unsupervised (no label at all)								
(g)	Segmental em	-	36.5	-	41.6				
	iteration 1	(h) GAN	48.3	48.6	50.3	50.0			
рg	iteration i	(i) GAN/HMM	-	30.7	-	39.5			
Proposed	iteration 2	(j) GAN	41.0	41.0	44.3	44.3			
rof		(k) GAN/HMM	-	27.0	-	35.5			
Ь	iteration 3	(l) GAN	39.7	38.4	45.0	44.2			
		(m) GAN/HMM	-	26.1	-	33.1			

re 1: Overview of the proposed approach. The generator inles (a) phoneme classifier transforming the acoustic features predicted phoneme distributions, and (b) a phoneme distribusampled from each segment. The discriminator is trained to inguish between the generated and real phoneme sequences. HMMs are not shown.

Unsupervised Speech Recognition

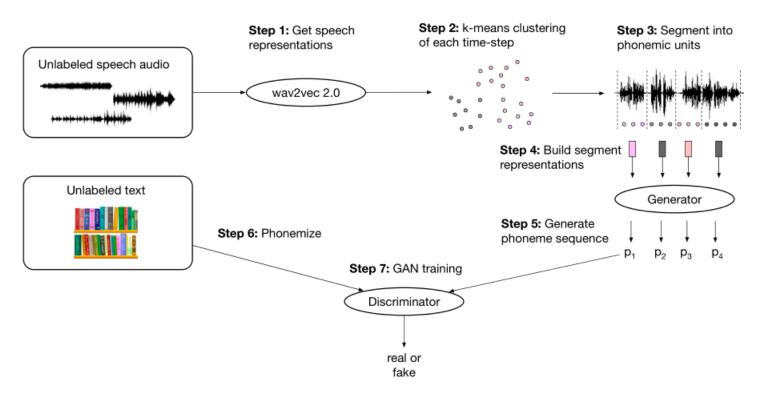


Figure 1: Illustration of wav2vec Unsupervised: we learn self-supervised representations with wav2vec 2.0 on unlabeled speech audio (Step 1), then identify clusters in the representations with k-means (Step 2) to segment the audio data (Step 3). Next, we build segment representations by mean pooling the wav2vec 2.0 representations, performing PCA and a second mean pooling step between adjacent segments (Step 4). This is input to the generator which outputs a phoneme sequence (Step 5) that is fed to the discriminator, similar to phonemized unlabeled text (Step 6) to perform adversarial training (Step 7).

$$\min_{\mathcal{G}} \max_{\mathcal{C}} \mathbb{E}_{P^r \sim \mathcal{P}^r} [\log \mathcal{C}(P^r)] - \mathbb{E}_{S \sim \mathcal{S}} [\log (1 - \mathcal{C}(\mathcal{G}(S)))] - \lambda \mathcal{L}_{gp} + \gamma \mathcal{L}_{sp} + \eta \mathcal{L}_{pd}$$
(6)

 wav2vec-U is a framework which enables building speech recognition models without labeled data. It embeds and segments the speech audio with self-supervised representations from wav2vec 2.0, learns a mapping to phonemes with adversarial learning, and crossvalidates hyper-parameter choices as well as early stopping with an unsupervised metric.

Towards End-to-end Unsupervised Speech Recognition

- However, existing methods still heavily rely on hand-crafted pre-processing. We introduce wav2vec-U 2.0 which does away with all audio-side pre-processing and improves accuracy through better architecture.
- we introduce an auxiliary self-supervised objective that ties model predictions back to the input.

$$\mathcal{L}_{ss} = -\sum_{t} \log P_{\mathcal{G}}(z_t|X)$$

$$\min_{\mathcal{G}} \max_{\mathcal{C}} \mathbb{E} \left[\log \mathcal{C}(Y_{u}) \right] - \mathbb{E} \left[\log \left(1 - \mathcal{C}(\mathcal{G}(X)) \right) \right] \\
- \lambda \mathcal{L}_{gp} + \gamma \mathcal{L}_{sp} + \eta \mathcal{L}_{pd} + \delta \mathcal{L}_{ss}$$

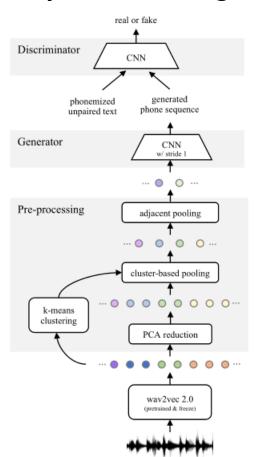


Figure 1: Wav2vec-U [6]. The input wav2vec2.0 feature is pre-processed before feeding into the generator as described in Section 2.2. The generator is optimized through adversarial training against the discriminator as described in Section 3.1

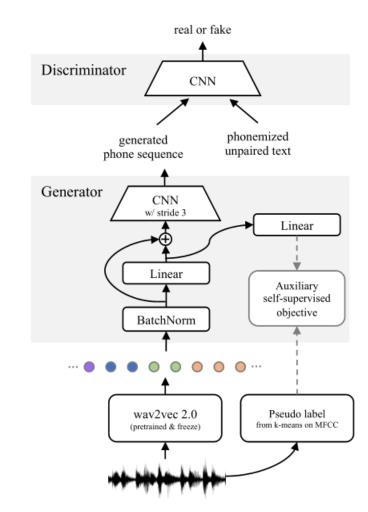


Figure 2: Proposed wav2vec-U 2.0. The generator takes raw wav2vec 2.0 feature as input without pre-processing step as described in Section 3.2. In addition to adversarial training, an auxiliary self-supervised objective is introduced with pseudo label derived from the raw waveform as described in Section 3.3.

Table 1: Interpolation from wav2vec-U (Fig. 1) to wav2vec-U 2.0 (Fig. 2). Phone Error Rate (PER) computed with greedy decoding on LibriSpeech dev-other set averaged over 8 runs. *Freq.* refers to the frequency of sequence, i.e. number of tokens per second.

	Pre-processing			(Generator	Result			
	Adjacent pooling	Cluster pooling	PCA reduction	Batch norm.	Linear proj.	Auxiliary loss	Stride	Freq. (Hz)	Average PER
wav2vec-U	√	√	√	-	-	-	1	14	18.8 ± 0.9
step (i)	-	\checkmark	✓	-	-	-	1	28	> 100
step (ii)	-	\checkmark	✓	-	-	-	2	14	18.5 ± 0.6
step (iii)	-	-	\checkmark	-	-	-	2	25	> 100
step (iv)	-	-	\checkmark	-	-	-	3	16	19.0 ± 0.9
step (v)	-	-	-	-	-	-	3	16	> 100
step (vi)	-	-	-	\checkmark	-	-	3	16	16.4 ± 0.7
step (vii)	-	-	-	\checkmark	✓	-	3	16	15.9 ± 1.1
wav2vec-U 2.0	-	-	-	\checkmark	\checkmark	\checkmark	3	16	13.6 ± 0.9
input wav2vec 2.0 feature								50	-
ground truth pho	ne sequence							~ 10	-

Table 4: Word Error Rate (WER) on the Multilingual Librispeech (MLS) for German (de), Dutch (nl), French (fr), Spanish (es), Italian (it) and Portuguese (pt).

Model	Labeled data used	LM	de	nl	fr	es	it	pt	Avg.	
Labeled training hours (full)			2k	1.6k	1.1k	918	247	161		
Supervised learning										
Pratap et al. [22]	full	5-gram	6.49	12.02	5.58	6.07	10.54	19.49	10.0	
Unsupervised lea	Unsupervised learning									
wav2vec-U	Oh	4-gram	32.5	40.2	39.8	33.3	58.1	59.8	43.9	
wav2vec-U 2.0	Oh	4-gram	23.5	35.1	35.7	25.8	46.9	48.5	35.9	
Unsupervised learning + self-training										
wav2vec-U	Oh	4-gram	11.8	21.4	14.7	11.3	26.3	26.3	18.6	
wav2vec-U 2.0	Oh	4-gram	11.5	17.6	12.8	10.9	18.6	20.6	15.3	

Table 3: Word Error Rate (WER) on LibriSpeech with different language models (LM) on the standard LibriSpeech dev/test sets.

Model	Unlabeled	LM	dev		test	
Wiodei	speech (hours)	LWI	clean	other	clean	other
Supervised learning w/ 9	60 hours of speech	1				
DeepSpeech 2 [34]	-	5-gram	-	-	5.33	13.25
Fully Conv [35]	-	ConvLM	3.08	9.94	3.26	10.47
TDNN+Kaldi [36]	-	4-gram	2.71	7.37	3.12	7.63
SpecAugment [18]	-	RNN	-	-	2.5	5.8
ContextNet [2]	-	LSTM	1.9	3.9	1.9	4.1
Conformer [1]	-	LSTM	2.1	4.3	1.9	3.9
Semi-supervised learning	g w/ 960 hours of s	speech				
Transf. + PL [26]	54k	CLM+Transf.	2.00	3.65	2.09	4.11
IPL [37]	54k	4-gram+Transf.	1.85	3.26	2.10	4.01
NST [38]	54k	LSTM	1.6	3.4	1.7	3.4
wav2vec 2.0 [15]	54k	Transf.	1.6	3.0	1.8	3.3
wav2vec 2.0 + NST [39]	54k	LSTM	1.3	2.6	1.4	2.6
Unsupervised learning						
wav2vec-U	54k	4-gram	13.3	15.1	13.8	18.0
wav2vec-U 2.0	54k	4-gram	9.8	13.1	9.9	13.9
Unsupervised learning +	Self-Training					
wav2vec-U	54k	4-gram	3.4	6.0	3.8	6.:
wav2vec-U 2.0	54k	4-gram	3.5	6.0	3.7	6.3

 An end-to-end approach for unsupervised ASR is key to increasing applicability to low-resource languages. In this work, we move towards this goal by removing the need for humanengineered pre-processing and by improving accuracy.