Towards End-to-end Unsupervised Speech Recognition
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Completely Unsupervised Speech Recognition By A Generative Adversarial Network Harmonized With lteratively

Refined Hidden Markov Models
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Algorithm 1: GAN/HMM Harmonization

Input: Real phoneme sequences P!, Speech utterances,
initial phoneme segmentation boundaries b

Output: Unsupervised ASR system

while not converged do

Given b, in an unsupervised way train the GAN,

Obtain transcriptions 71" of speech utterances using the
generator within the GAN;

Given 7', train the HMMs;

Obtain a new b by forced alignment with the HMM:s.

Table 1: Comparison of different methods

il

B

Predicted
Distributions

s s ) s
Segments E | i : 2 : 3 : : L :
i : : I ) l
Acoustic ! H ! H ! H H AETTIN H !
Features ] { i : ' !
!Xy Xz X3 X4 X5 o) ! .
AVITIEE Ty
(a) Phoneme Classifier '
vV Yiv v v 7 v
Y1 ¥2i¥3 Y4 ¥s : ypi
:
i
]
i

101e49U35)

aITn
> 0OOD

(b) § mpling Process

Matched Nonmatched
Approaches all 4000) | (3000/1000) dim=wi:wof | E
FER | PER | FER | PER i~ = ..
LD G S D 2l G‘enera;ed Pho;:eme S; uences (};93"}
(a) RNN Transducer [22] - 17.7 - - q9
(b) standard HMMs - 21.5 - - leal or . . =
(c) Phoneme classifier 270 [ 289 | = | - | nerated € Discriminator
(1I) Unsupervised (with oracle boundaries) N
(d) Mapping relationship GAN [21] | 40.5 | 40.2 | 43.6 | 434 Real Phoneme Sequences (P"¢%)
(e) Segmental empirical-ODM [22] 333 | 325 | 40.0 | 40.1 dim = M: # of |:
(f) Proposed: GAN 276 | 285 | 32.7 | 343 rmapesy a E H a
(IIT) Completely unsupervised (no label at all) sil d ow sil
(g) Segmental empirical-ODM [22] - 36.5 - 41.6
. ) (h) GAN 483 | 486 | 503 | 50.0 ire 1: Overview of the proposed approach. The generaior in-
o iteration 1 (1) GAN/HMM . 307 - 305 | les (a) phoneme classifier transforming the acoustic features
2 | _ () GAN 310 | 410 | 443 | 443 predicted phoneme distributions, and (b) a phoneme distribu-
& | Ilteration 2 (k) GAN/HMM - 370 - 355 sampled from each segment. The discriminator is trained to
e ration 3 1) GAN 307 [ 384 | 450 | 442 Ean;;i:; between ;he generated and real phoneme sequences.
1teration (m) GAN}FHMM - 26] ~ 33.] § are not sSHown.




Unsupervised Speech Recognition

Step 1: Get speech Step 2: k-means clustering Step 3: Segment into
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Figure 1: Illustration of wav2vec Unsupervised: we learn self-supervised representations
with wav2vec 2.0 on unlabeled speech audio (Step 1), then identify clusters in the represen-
tations with k-means (Step 2) to segment the audio data (Step 3). Next, we build segment
representations by mean pooling the wav2vec 2.0 representations, performing PCA and a
second mean pooling step between adjacent segments (Step 4). This is input to the gener-
ator which outputs a phoneme sequence (Step 5) that is fed to the discriminator, similar to
phonemized unlabeled text (Step 6) to perform adversarial training (Step 7).
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wav2vec-U is a framework which
enables building speech
recognition models without
labeled data. It embeds and
segments the speech audio with
self-supervised representations
from wav2vec 2.0, learns a
mapping to phonemes with
adversarial learning, and cross-
validates hyper-parameter
choices as well as early stopping
with an unsupervised metric.



Towards End-to-end Unsupervised Speech Recognition

However, existing methods still heavily rely
on hand-crafted pre-processing. We
introduce wav2vec-U 2.0 which does away
with all audio-side pre-processing and
iImproves accuracy through better
architecture.

we introduce an auxiliary self-supervised
objective that ties model predictions back
to the input.
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Figure 1: Wav2vec-U [6]. The input
wav2vec2.0 feature is pre-processed be-
fore feeding into the generator as de-
scribed in Section 2.2. The generator
1s optimized through adversarial training
against the discriminator as described in
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Figure 2: Proposed wav2vec-U 2.0. The generator
takes raw wav2vec 2.0 feature as input without
pre-processing step as described in Section 3.2. In
addition to adversarial training, an auxiliary self-
supervised objective is introduced with pseudo la-
bel derived from the raw waveform as described in
Sactinn 2 3




Table 1: Interpolation from wav2vec-U (Fig. 1) to wav2vec-U 2.0 (Fig. 2). Phone Error Rate (PER)
computed with greedy decoding on LibriSpeech dev-other set averaged over 8 runs. Freq. refers to
the frequency of sequence, 1.e. number of tokens per second.

Pre-processing Generator configuration Result
Adjacent  Cluster PCA Batch Linear Auxiliary Stride Freq.  Average
pooling  pooling reduction norm.  proj. loss : (Hz) PER
wav2vec-U v v v - - - 1 14 18.8 = 0.9
step (i) - v v - - - 1 28 > 100
step (ii) - v v - - 2 14 185 +0.6
step (iii) - - v - - - 2 25 = 100
step (iv) - - v - - - 3 16 19.0 £ 0.9
step (v) - - - - - - 3 16 > 100
step (vi) - - - v - - 3 16 164 + 0.7
step (vii) - - - v v - 3 16 159+ 1.1
wav2vec-U 2.0 - - - v v v 3 16 13.6 £ 0.9
input wav2vec 2.0 feature 50 -
ground truth phone sequence ~10 -

Table 4: Word Error Rate (WER) on the Multilingual Librispeech (MLS) for German (de), Dutch
(nl), French (fr), Spanish (es), Italian (it) and Portuguese (pt).
Labeled

Model data used LM de nl fr es it pt | Avg.
Labeled training hours (full) | 2k 1.6k 1.1k 918 247 161 |
Supervised learning

Pratap et al. [22] full S-gram | 6.49 12.02 558 6.07 1054 1949 | 10.0

Unsupervised learning

wav2vec-U Oh
wav2vec-U 2.0 Oh

4-gram | 32.5 40.2 398 333 58.1 598 | 439
4-gram | 23.5 351 357 258 46.9 48.5 | 359

Unsupervised learning + self-training

wav2vec-U Oh 4-gram | 11.8 214 147 113 26.3 26.3 18.6
wav2vec-U 2.0 Oh 4-gram | 11.5 176 12.8 109 18.6 206 | 153

Table 3:  Word Error Rate (WER) on LibriSpeech with different language models (LM) on the
standard LibriSpeech dev/test sets.

Unlabeled dev test

Model speech (hours) LM clean other clean other
Supervised learning w/ 960 hours of speech

DeepSpeech 2 [34] - 5-gram - - 533 1325
Fully Conv [35] - ConvLM 308 994 326 1047
TDNN+Kaldi [36] - 4-gram 271 1737 312 7.63
SpecAugment [18] - RNN - - 2.5 5.8
ContextNet [2] - LSTM 1.9 39 1.9 4.1
Conformer [1] - LSTM 21 43 1.9 3.9

Semi-supervised learning w/ 960 hours of speech

Transt. + PL [26] 54k CLM+Transf. 200 3.65 209 411
IPL [37] 54k 4-gram+Transf. 185 326 210 401
NST [38] 54k LST™M 16 34 17 34
wav2vec 2.0 [15] 54k Transf. 1.6 30 1.8 33
wav2vec 2.0 + NST [39] 54k LST™M 13 26 14 26
Unsupervised learning

wav2vec-U 54k 4-gram 133 151 138 180
wav2vec-U 2.0 54k 4-gram 98 131 99 139
Unsupervised learning + Self-Training

wav2vec-U 54k 4-gram 34 60 38 6.5
wav2vec-U 2.0 54k 4-gram 35 60 37 6.3

* An end-to-end approach for
unsupervised ASR is key to increasing
applicability to low-resource languages.
In this work, we move towards this goal
by removing the need for human-
engineered pre-processing and by
Improving accuracy.



