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Abstract

We show that using dropout in a network can be interpreted as a kind of data
augmentation without domain knowledge. We present an approach to projecting
the dropout noise within a network back into the input space, thereby generating
augmented versions of the training data, and we show that training a deterministic
network on the augmented samples yields similar results. We furthermore propose
an explanation for the increased sparsity levels that can be observed in networks
trained with dropout and show how this is related to data augmentation. Finally,
we detail a random dropout noise scheme based on our observations and show that
it improves dropout results without adding significant computational cost.

1 Introduction

Noise is normally seen as intrinsically undesirable. The word itself bears a very negative connota-
tion. It is not surprising then that many early mathematical models in neuroscience aimed to factor
out noise by any means. A few decades ago, the use of stochastic resonance [1] in neuro-scientific
models initiated a new interest in neurosience regarding random fluctuations and the role they play
in the brain. Theories about neuronal noise are now flourishing and previous deterministic models
are improved by the incorporation of noise [2].

Biological brains have always been a strong inspiration when it comes to developing learning al-
gorithms. Considering the amount of noise which takes place in the brain during learning, one can
wonder if this has any beneficial effect. Many techniques in machine learning have made use of noise
to improve performance recently, namely, Denoising Autoencoders [3], dropout [4] and its relative,
DropConnect [5]. Those successful approaches suggest that neuronal noise plays a fundamental role
in the process of learning and should be studied more thoroughly.

Using dropout can be viewed as training a huge number of neural networks with shared parameters
and applying bagging at test time for better generalization [6]. Binary noise can also be viewed as
preventing neurons from co-adapting, which improves the generalization of the model even more.
In this paper, we propose an alternative view inspired by results coming from computational neuro-
science. Yarom and Hounsgaard [2] reports that the variation in population of neuronal activity is
believed to express ambiguity about the environment 1. Such variations can also be thought of as a
basic form of data augmentation without domain knowledge. We propose that multiplicative noise
schemes like dropout are implicitly incorporating a form of sophisticated data augmentation. In Sec-
tion 3, we formulate a method to generate data which replicates dropout noise within a deterministic
network, and we demonstrate in Section 5 that there is no significant loss of accuracy.

1The environment is basically the input of the network
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Recent work [7] has shown that regularization in autoencoders, also including dropout style input
corruption, leads to tiling of the input space2 via strong negative hidden biases. In the present work,
the idea is extended to multilayer discriminative networks with the hypothesis that input space tiling
is the best possible representation when the input samples are distributed along a highly non-linear
or discontinuous manifold. We also show that using dropout noise, which acts like data augmenta-
tion, yields in a more fine-grained tiling of the input space resulting in sparser representations and
better classification performance. We experimentally show that the magnitude of the sparsity of the
hidden representation is proportional to the corresponding input noise level. An explanation for this
observation is presented in Section 4.

Finally, capitalizing on the idea of data augmentation, we present an extension of dropout which
uses random noise levels to improve the variety of samples. This simple extension gives better
classification performance across different network architectures, yielding competitive results on
the MNIST permutation invariant classification task.

2 Dropout and its derivatives

Dropout [4] is a technique where a fraction of hidden units in a deep network are randomly turned
off while training. Given an input vector ~x to a layer and an N -dimensional weight vector ~wn the
hidden response corresponding to filter ~wn before the non-linearity can be written as

~hn =
∑
i

xiwn,i + b = ~wT
n~x+ bn (1)

Using dropout involves multiplying ~x with a binary mask sampled with probability p. Most often,
the probability used is 0.5 which implies half of the input dimensions (or hidden units if the input
comes from the previous layer) are dropped. To compensate for the loss of magnitude the active
dimensions are scaled by 1

p = 2. The new hidden value can be written

hn = ~wT
n (~r � ~x) + bn (2)

where P (ri = 1) = 0.5. Similarly, DropConnect can be formalized as

hn = (~rn � ~wn)
T~x+ bn (3)

3 Dropout from a data augmentation perspective

In many previous works it has been shown that augmenting data by using domain specific trans-
formations helps in learning better models [8, 9, 10, 11]. In this work, we analyze dropout in the
context of data augmentation. Considering the task of classification, given a set of training samples,
the objective would be to learn a mapping function which maps every input to its corresponding out-
put label. To generalize, the mapping function needs to be able to correctly map not just the training
samples but also any other samples drawn from the data distribution. This means that it must not
only map input space sub-regions represented by training samples, but all sub-regions containining a
significant amount of data. One way to learn such a mapping function is by augmenting the training
data such that it covers a larger portion of the natural distribution. Domain-based data augmentation
helps to artificially boost training data coverage which makes it possible to train a better mapping
function. We hypothesize that noise based regularization techniques result in a similar effect of in-
creasing training data coverage at every hidden layer and this work presents multiple experimental
observations to support our hypothesis.

3.1 Projecting noise back into the input space

An intuitive view of dropout is that the noise at each hidden layer is a random transformation of the
input at different levels of representation. It is less clear however how those transformations affect
the network globally.

2By this, we mean that the features learned by the layer will cover small non-overlapping sub-regions of the
input space, thus dividing it into tiles.
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Suppose that for each transformation, it would be possible to find an input which would approxi-
mately generate the same hidden activity deterministically. This would make it possible to remove
the noise from the network and to train it deterministically on transformed data, by projecting the
noise back into the input.

Assume h(x) is a linear projection of a di-dimensional input x into a dh-dimensional space:

h(x) = xW + b (4)

and given a(h) and ã(h), an activation function and its noisy version where ~m is a random variable
sampled from a Bernoulli distribution B(ph) and rect(h), a rectifier

a(h) = rect(h) (5)
ã(h) = ~m� rect (h) (6)

We assume that for a given ã(h), there exist an x∗, such that

(a ◦ h)(x∗) = rect(h(x∗)) ≈ ~m� rect (h(x)) = (ã ◦ h)(x) (7)

Similarly to adversarial examples from [12], an x∗ can be found by minimizing the squared error L
using stochastic gradient descent

L (x, x∗)) = |(a ◦ h)(x∗)− (ã ◦ h)(x)|2 (8)

Equation 8 can be generalized to a network with n hidden layers. To lighten notation we first define

f̃ (i)(x) =
(
ã(i) ◦ h(i) ◦ · · · ◦ ã(1) ◦ h(1)

)
(x) (9)

f (i)(x∗) =
(
a(i) ◦ h(i) ◦ · · · ◦ a(1) ◦ h(1)

)
(x∗) (10)

which results in generalized equation

L
(
x, x(1)

∗
, . . . , x(n)

∗
)
=

n∑
i=1

λi

∣∣∣f (i) (x(i)∗)− f̃ (i)(x)∣∣∣2 (11)

We can show, with a proof by contradiction, that it’s unlikely to find a single
x∗ = x(1)

∗
= x(2)

∗
= · · · = x(n)

∗
that minimizes well L. Proof is detailed in appendix subsection

7.1. Fortunately, it is easy to find a different x∗ for each hidden layer, by providing multiple inputs
(x, x(1)

∗
, x(2)

∗
, . . . , x(n)

∗
), where n is the number of hidden layers. As each x(i)

∗
is the projection

of a transformation in the representation space defined by the i-th hidden layer, it suggests viewing
dropout as a sophisticated data augmentation procedure that samples data around training examples
with respect to different level of representations. This raises the question whether we can train the
network deterministically on the x(i)

∗
rather than using dropout. The answer is not trivial, because

1. As training is now deterministic, the stimuli will spread inside the network without any
noise distortion, making the hypothesis that dropout avoids co-adaptation less likely.

2. The gradients of the linear projections will differ greatly. In the case of dropout, ∂h
∂W (i) is

always equal to its input transformation, i.e. f̃ (i−1)(x), whereas the deterministic version
of the training will update W (i) according to

(
f (i−1)(x(1)

∗
), . . . , f (i−1)(x(n)

∗
)
)

3.

Although we proved a single x∗ minimising 11 is difficult to find for a large network, we show ex-
perimentally in section 5 that it is possible to do so within reasonable approximation for a relatively
small two hidden layers network. We further show that dropout can be replicated by projecting the
noise back on the input space without a significant loss of accuracy.

3Because we train on n samples from x, one for each hidden layer
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4 Sparsity and input space tiling

We explained above how training a network with dropout at different layers can also be viewed
approximately as augmenting the training data, but in a smart way that depends on thw network
parameters and chosen level of representation. In this section we present additional support for this
argument based on experimental observations about the sparsity of the hidden layer representations
in a network. As we will see in the experiments section 5, in a multi-layered network trained with
dropout, it can be observed that the sparsity of the hidden layer representation, given sufficient
hiddens, is roughly proportional to the corresponding input corruption level. In the section we
present a hypothesis to explain this behavior.

4.1 Non-linear manifolds and tiling

When the data points belonging to a particular class are distributed along a linear manifold, or
sub-space, of the input space, it is enough to learn a single set of features which can span the entire
manifold. But when the data is distributed along a highly non-linear and discontinuous manifold, the
best way to represent such a distribution is to learn features which can explicitly represent small local
regions of the input space, effectively “tiling” the space to define non-linear decision boundaries.

4.2 Why sparsity?

Let us assume that an input distribution is represented by M different discontinuous manifolds or
clusters in an N dimensional input space. Given a set of K feature vectors an efficient representa-
tion would be one which maps all input clusters to representations with least overlap (in terms of
hidden dimensions) across multiple clusters. Let Am be the set of active dimensions of the hidden
representation that represents a given sub-space m. For a sufficiently large K, even with large Am,
one could generate enough hidden representations to map all the clusters such that the overlap across
representations Ai∩Aj ; i, j ∈ {1, ...,M} is small. This would correspond to a dense representation
as the set of active dimensions Am is large. But when we have a small K and large M , which is
mostly the case in practice, the only way to generate hidden representations with small overlap is to
lower the active subset size Am i.e., increase the sparsity of the representation. When K is insuffi-
cient to generate representations with least overlap it results in denser and inefficient representations
with larger overlap.

To illustrate this view we use a classification experiment on a 2D toy-dataset. We define a set of data
points distributed on unit circle with different small arcs on the circle belonging to different classes.
For simplicity all the arcs are of same length. Any two arcs of the same class are separated by arcs
of other classes creating discontinuous manifolds.

We defined multiple datasets by varying the arc length such that in each dataset the number of input
clusters is different. The datasets are defined such that the smaller the length of the arc, the higher
the number of arcs per class overall. The circumference of the circle is defined by 15000 points and
the total number of classes is 10. Two example datasets are shown in Figure 1. We train networks
with a single hidden layer containing 12 units to perform classification. The training data in the
case of each dataset is a set of 5000 points randomly selected from the total set of points. We also
ran the same experiments using training set size of 1000 points. The sparsity of the hidden layer
representations from the networks trained on different datasets is plotted in Figure 1. From the plot
it can be observed that the sparsity of the hidden presentation decreases with increase in arc-length,
i.e., with decreasing number of clusters the model needs to map. It can also be observed that the
sparsity is not proportional to the number of training samples but mainly to the number of clusters.

Since higher dropout levels also result in sparser representations (see Section 5), we hypothesize
that the purpose of corruption can also be viewed as creating more input sub-spaces or clusters to
cover by effectively augmenting the original data samples. This is in line with the data augmentation
argument from the previous section.

4.3 Random noise levels

In almost all previous work using corruption as regularization, the level of corruption for each layer
is fixed during training. Some recent work reports that noise level schedules, inspired by simulated
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(a) Arclength=300 (b) Arclength=500 (c) Hidden layer sparsity

Figure 1: (a), (b); Two sample input distributions defined with different arc lengths. (c) The sparsity
of the hidden layer from a single layer MLP trained on datasets defined using different arc lengths.

annealing, help in supervised and unsupervised tasks [13, 14, 15]. Assuming that corruption implies
data augmentation, a variable noise level for each layer will result in a richer augmentation of the
training data, i.e., more diverse transformations. While this is not the objective of a decreasing
schedule, it does have a diversification effect on the transformations.

We propose an alternative that avoids a schedule and rather uses random noise levels such that the
model cannot adapt to slowly changing noise distribution.

Random-dropout At each layer the corruption level p is sampled per training sample from a uni-
form distribution in the interval [a, b], 0 ≤ a < b ≤ 1

A similar approach of sampling the noise level was used in [13] in the context of unsupervised
learning using an autoencoder. However, they show that the approach is not very useful in their
case.

4.4 Thresholding non-linearities

If learned features “tile” the input space, one would expect that the information whether a hidden
unit is on or off is more important than the actual magnitude of the hidden response. To test this
hypothesis we performed additional experiments using a thresholding non-linearity, rectified-tanh.
The rectified-tanh is obtained by applying rectification following the tanh function which gives the
positive half of the tanh function. We ran multiple experiments with different noise schemes using
the same approaches that were used for ReLU networks in Section 5. A network with 2500-1250
hidden units trained with dropout noise (0.2 input noise, 0.5 hidden noise) gave 1.02% error on
MNIST dataset and 39.61% on CIFAR-10. The same experiment using Random-Dropout with noise
interval of [0.0, 0.5] gave 0.91% error on MNIST and 38.42% on CIFAR-10.

An interesting fact that emerged from our experiments is that models with ReLU activation functions
are on-par with models using rectified-tanh. As the latter function quickly saturates to 1, it seems that
the linear part of the ReLU is not fully exploited. We made an experiment to test if the hypothesis is
true. We trained a rectified-tanh network with 2500-1250 hidden units with dropout noise (0.2 input
noise, 0.5 hidden noise) on MNIST and CIFAR-10 datasets. For inference, the response h (after
non-linearity) of each hidden unit is set to 1 if h > 0 and 0 when h ≤ 0, turning the unit binary.
The binary inference resulted in 1.41% test error on MNIST and 41.02% on CIFAR-10. This shows
that the network relies more on a unit being on or off than the magnitude of its response. Moreover,
this is consistent with the hypothesis that a sparse representation is tiling input sub-regions, i.e, the
activation represents whether an example is within a given sub-region or not.

5 Experiments

We ran a series of experiments with Multi-Layer-Perceptron (MLP) architectures on the MNIST and
CIFAR-10 datasets to study the effect of noise schemes on the performance and the learned network
parameters. Each MLP consists of two hidden layers with ReLU units followed by a softmax layer.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Error percentages on the MNIST and CIFAR-10 datasets using MLP architectures trained
with different corruption schemes. Row-1: Experiments on CIFAR-10. Row-2: Experiments
on MNIST. Column-1: Using dropout with varying input noise and fixed hidden noise of 0.5.
Column-2: Using dropout with varying hidden noise with fixed input noise of 0.2. Column-3:
Using Random-dropout with varying noise range [0, x] used at hidden and input layers.

We experimented with three different MLP architectures each one with a different number of units
in the hidden layers: 2500-625, 2500-1250 and 2500-2500. The MNIST dataset consists of 60000
training samples and 10000 test samples. We split the training set into a set of 50000 samples for
training and 10000 for validation. Each network is trained for 501 epochs and the best model based
on validation error is selected. Later the best model is further trained on the complete training set of
60000 samples (training + validation split) for another 150 epochs. The mean error percentage for
the last 75 epochs is used for comparison.

We also ran experiments on the CIFAR-10 permutation invariant task using the same MLPs de-
scribed above. The dataset consists of 50000 training samples and 10000 test samples. We use PCA
based dimensionality reduction without whitening as preprocessing scheme. We used the same ap-
proach as that in the MNIST experiments to train the networks and for reporting the performances.

First, we evaluated the dropout noise scheme by training the MLPs with a fixed hidden noise level
of 0.5 and the input noise level varying from 0.0 to 0.7 with increments of 0.1 for each experiment.
In the second experiment, we fixed the input noise level at 0.2 and the hidden noise level is varied
from 0.0 to 0.7, again with an increment of 0.1. In the final set of experiments we use the Random
Dropout noise scheme using the same noise level at input and hidden layers. The noise level in
this case is a range [0, x] where x is varied from 0.0 to 0.8 with increment 0.1. The classification
performances corresponding to the all the experiments on both the datasets are reported in Figure 2.

The plots showing the sparsity of hidden layer representations against noise levels are shown in
Figure 3. In that figure only plots corresponding to the random noise scheme experiments are shown
where it can be observed that the sparsity of a given hidden layer representation is proportional
to the level of noise applied to its input. We observed the same behavior in case of the dropout
experiments. To show that the proportionality between noise level and sparsity is not limited to
using dropout noise, we performed an additional experiment using Gaussian noise for corruption.
We trained a two-layered MLP with 2500− 1250 hidden units on MNIST dataset using zero-mean
additive Gaussian noise for input corruption. The standard deviation of the Gaussian is varied to be
[0., 0.2, .0.4, 0.6]. The corresponding layer-1 sparsity levels are shown in figure 3.
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(a) (b)

(c) (d) (e)

Figure 3: Sparsity in different layers of MLPs trained using noise based regularization schemes. (a)
and (b) correspond to sparsity in layer-1 and layer-2 respectively of networks trained on CIFAR-
10 using random-dropout. (d) and (e) show the corresponding results for MNIST. (c) shows the
layer-1 sparsity of a network trained using zero-mean additive Gaussian noise for input corruption
on MNIST.

Figure 4: Comparing layer-2 responses of a 1000-2000-3000 unit network trained with dropout
corruption on CIFAR-10. x1: Original train sample without dropout. x̃1: x1 when using regular
dropout in the network. x2: Different sample from same class as that of x1. x3: Sample from a
different class. For x1, the indices of hidden representation are sorted in increasing order of the
corresponding response and the same order is used for hidden representations in other cases.
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EXPERIMENTAL SETUP MNIST CIFAR-10
DROPOUT ON INPUT 1.12% 40.9%
DROPOUT ON INPUT+HIDDEN 0.95% 39.0%
NOISE PROJECTION 0.99% 37.9%

Table 1: Test accuracy on permutation invariant MNIST and CIFAR-10 (2500-1250 hidden units
with 0.2 dropout input noise and 0.5 hidden layer dropout noise where applicable). Noise on CIFAR-
10 is applied to the PCA representation.

5.1 Training deterministically with noise projected back into input

We used a similar setting to test the effect of replacing dropout by back-projected inputs. We trained
MLPs with 2500 hidden units in the first and 1250 hidden units in the second layer in all experiments.
We used input noise level 0.2 and dropout level 0.5 for both hidden layers in our reference models
and the same values to compute back-projected inputs.

At each epoch, an x∗ is generated for each training sample. It proved to be possible to find good
x∗ approximations for the entire network at once for a 2-hidden layer network. Thus, we trained on
x and x∗ solely rather than x, x(1)

∗
and x(2)

∗
as it gave a significant speed up. For simplicity, the

network is trained on x for an epoch than on x∗ for an epoch. All x∗ are generated with parameter
values of the model at the beginning of the epoch.

Noisy inputs x∗ are found using stochastic gradient descent. 20 learning steps are done with a
learning rate of 300.0 for first hidden layer and 30 for second hidden layer.

In order to get comparable results for input transformations, we also report results with Bernoulli
binary mask applied on the input. Results for simple input transformations, dropout and noise
projection are shown in table 1.

Results from table 1 suggest that Dropout can be replicated by projecting the noise back into the
input and training a neural network deterministically on this generated data. There is not significant
drop in accuracy, it is even slightly better than Dropout in the case of CIFAR-10. This support the
idea that dropout can be seen as data augmentation. Furthermore, it suggests that local dynamics that
could avoid co-adaptation of neurons may not play a significant role in the training of the networks.

In figure 4 we plotted the intermediate layer representation of a 1000-2000-3000 hidden unit network
trained with dropout corruption on CIFAR-10. We computed the intermediate layer representation
of four different inputs 4 , i.e., a training sample x1, corrupted version of it termed x̃1, x2, another
sample from the same class as that of x1 and a sample from different class x3. It can be observed
from the figure that the representations of corrupted input x̃1 and the one from the same class x2
differ in a similar way from the representation of x1 while being a lot different from that of x3. This
suggests that certain level corruption in hidden layers is similar to sampling a new input from the
same class.

6 Conclusion

In this work we suggest interpreting multiplicative noise such as dropout as data augmentation with-
out domain knowledge. We gave empirical evidence in favor of this view. Further experiments will
be required to better understand how this data augmentation procedure evolves during training, how
it scales to large architectures, how it applies to data other than images, etc.

We also discussed the effect of increased sparsity levels found in networks trained with Dropout and
showed how this is related to data augmentation via input space tiling. Based on richer data aug-
mentation idea, we tested a random dropout noise scheme which improved Dropout results without
adding a significant computational cost.

4All the inputs are classified correctly.
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7 Appendix

7.1 Proof of x∗ unlikeliness

We can show, with a proof by contradiction, that it’s unlikely to find a single x∗ = x(1)
∗
= x(2)

∗
=

· · · = x(n)
∗

that minimizes well L.

By the associative property of function composition, we can rewrite equation 10

f (i)(x∗) =
(
a(i) ◦ h(i)

)(
f (i−1) (x∗)

)
(12)

Suppose there exist an x∗ such that

(
a(i) ◦ h(i)

)(
f (i−1) (x∗)

)
=
(
ã(i) ◦ h(i)

)(
f̃ (i−1)(x)

)
(13)(

a(i−1) ◦ h(i−1)
)(

f (i−2) (x∗)
)
=
(
ã(i−1) ◦ h(i−1)

)(
f̃ (i−2)(x)

)
(14)

Based on 12 and 14, we have that f (i−1)(x∗) = f̃ (i−1)(x). The proof is concluded by replacing the
latter in 13 and then expanding the composed functions.

(
a(i) ◦ h(i)

)(
f (i−1) (x∗)

)
=
(
ã(i) ◦ h(i)

)(
f (i−1)(x∗)

)
rect

(
h(i)

(
f (i−1) (x∗)

))
= ~m(i) � rect

(
h(i)

(
f (i−1) (x∗)

))
(15)

Equation 15 can only be true if ~m(i) does not apply any modification to rect
(
h(i)

(
f (i−1) (x∗)

))
, that

means ~m(i)
j = 1 when rectj

(
h(i)

(
f (i−1) (x∗)

))
> 0. It happens with a probability p

d(i)s(i)
(i) where

p(i) is the Bernoulli success probability, d(i) is the number of hidden units and s(i) is the mean
sparsity level, i.e. mean percentage of active hidden units, of the i-th hidden layer. This probability
is very low for standard hyper-parameters values. For instance, with p(i) = 0.5, d(i) = 1000 and
s(i) = 0.15, the probability is as low as 10−47.

7.2 Sparsity in dropout networks

Section 5(Figure 3) presented sparsity levels corresponding to Random-dropout. In this section we
present additional plots corresponding to the dropout validation experiments in Figure 5. It can be
observed from the figure that the proportionality between the input noise level and the corresponding
hidden layer sparsity also holds in dropout experiments as stated in Section 5. In case of Figure 5(a)
the sparsity initially increases with the input noise level but then starts to fall. This may be due to the
dense PCA representation of the input data in the CIFAR-10 experiments where higher noise levels
probably destroy the input manifold structure.

7.3 Proportional Gaussian Noise (PGN)

It is shown by [5] that a noise scheme involving multiplication with a zero-mask can be approximated
as a Gaussian noise distribution on the hidden units:

hn = ~wT
n~x+ (~w2

n)
T~x2N (0, p(p− 1)) + bn (16)

where ~w2
n and ~x2 are element-wise squares. From equation 16 it is clear that the noise variance

will span with (~w2
n)

T~x2. Interestingly, the variance is proportional to the intensity of the response.
We used equation 16 in a set of experiments rather than a binary mask, but replaced the expression
p(p−1) with hyperparameter σ2. We call this approach ”Proportional Gaussian Noise” (PGN). The
hidden response when using PGN can be written as

10



(a) Fixed hidden noise of 0.5 (b) Fixed input noise of 0.2

(c) Fixed hidden noise of 0.5 (d) Fixed input noise of 0.2

Figure 5: Sparsity in different layers of MLPs trained using noise based regularization schemes. (a)
and (b) correspond to sparsity in layer-1 and layer-2 respectively of networks trained on CIFAR-10
using dropout. Similarly (d) and (e) are on MNIST.

hn = ~wT
n~x+ (~w2

n)
T~x2N

(
0, σ2

)
+ bn (17)

We evaluated the noise scheme PGN where instead of using zero-mask input corruption like in
Dropout experiments we add zero mean Gaussian noise with fixed standard deviation to the input.
Since noise is added to the input which produces the desired response variation in the first hidden
layer units, we do not add any noise to the first layer responses for these experiments. For all the
other layers including output layer noise scheme PGN is used. We use same approach as described
in Section 5 to train and report PGN network performance. We found that the PGN noise scheme
also gives results similar to dropout. A network with 2500-1250 hidden units using PGN noise
scheme with input Gaussian noise of 0.2 variance achieved 0.92% error on MNIST dataset.
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