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Abstract

Recent work on word embeddings has shown
that simple vector subtraction over pre-trained
embeddings is surprisingly effective at cap-
turing different lexical relations, despite lack-
ing explicit supervision. Prior work has evalu-
ated this intriguing result using a word analogy
prediction formulation and hand-selected rela-
tions, but the generality of the finding over a
broader range of lexical relation types and dif-
ferent learning settings has not been evaluated.
In this paper, we carry out such an evaluation
in two learning settings: (1) spectral cluster-
ing to induce word relations, and (2) supervised
learning to classify vector differences into rela-
tion types. We find that word embeddings cap-
ture a surprising amount of information, and
that, under suitable supervised training, vector
subtraction generalises well to a broad range of
relations, including over unseen lexical items.

1 Introduction

Learning to identify lexical relations is a funda-
mental task in natural language processing (“NLP”).
Accurate relation classification, relational similar-
ity prediction, and wide-coverage and adaptable re-
lation discovery can contribute to numerous NLP

applications including paraphrasing and generation,
machine translation, and ontology building (Banko
et al., 2007; Hendrickx et al., 2010).

Recently, attention has been focused on identify-
ing lexical relations using contextual vector space
representations, particularly neural language embed-
dings, which are dense, low-dimensional vectors ob-
tained from a neural network trained to predict word
contexts. The skip-gram model of Mikolov et al.

(2013a) and other neural language models have been
shown to perform well on an analogy completion
task (Mikolov et al., 2013c; Mikolov et al., 2013b),
in the space of relational similarity prediction (Tur-
ney, 2006). Linear operations on word vectors ap-
pear to capture the lexical relation governing the
analogy. A well-known example involves predict-
ing the vector queen from the vector combination
king − man + woman, which appears to cap-
ture a gender relation. The results also extend to
semantic relations such as CAPITAL-OF-COUNTRY

(paris − france + poland ≈ warsaw) and
morphosyntactic relations such as PLURALISATION

(cars − car + apple ≈ apples). This is partic-
ularly remarkable because the model is not trained
for this task, so the relational structure of the vec-
tor space appears to be an emergent property of the
model.

The key operation in these models is vector differ-
ence, or vector offset. For example, it is the paris−
france vector that appears to encode CAPITAL-OF,
presumably by cancelling out the features of paris
that are France-specific, and retaining the features
that distinguish a capital city (Levy and Goldberg,
2014a). The success of the simple offset method
on analogy completion suggests that the difference
vectors (“DIFFVEC” hereafter) must themselves be
meaningful: their direction and/or magnitude en-
codes a semantic relation. We would then expect the
vector helsinki − finland to be quite similar, in a
quantifiable way, to paris− france.

However, the now-standard analogy task is only
a first step in probing the semantics and morphosyn-
tactics of DIFFVECs. First, the analogy task does not
provide coverage of many well-known lexical rela-
tion types from the linguistics and cognitive science
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literature. Second, because the task requires a one-
best answer, it may fail to identify meaningful pat-
terns present in the data. Third, it is focused on re-
call rather than precision, leaving open the question
of whether all DIFFVECs encode meaningful rela-
tions. There may also be more fine-grained structure
in the DIFFVECs: Fu et al. (2014) found that vector
offsets representing the hypernym relation could be
grouped into semantic sub-clusters, as the difference
between carpenter and laborer, e.g., was quite
distinct from the one between goldfish and fish.

In this paper we investigate how well DIFFVECs
calculated over different word embeddings capture
lexical relations from a variety of linguistic re-
sources. We systematically study the expressivity of
vector difference in distributed spaces in two ways.
First, we cluster the DIFFVECs to test whether the
clusters map onto true lexical relations. We explore a
parameter space consisting of the number of clusters
and two distance measures, and find that syntactic
relations are captured better than semantic relations.

Second, we perform classification over the DIFF-
VECs and obtain surprisingly high accuracy in a
closed-world setting (over a predefined set of word
pairs, each of which corresponds to a lexical relation
in the training data). When we move to an open-
world setting and attempt to classify random word
pairs — many of which do not correspond to any
lexical relation in the training data — the results are
poor. We then investigate methods for better attun-
ing the learned class representation to the lexical re-
lations, focusing on methods for automatically en-
gineering negative instances. We find that this im-
proves the model performance substantially.

2 Background and Related Work

A lexical relation is a binary relation r holding be-
tween a word pair (wi, wj); for example, the pair
(cart,wheel) stands in the WHOLE-PART relation.
NLP tasks related to lexical relation learning include
relation extraction and discovery, relation classifi-
cation, and relational similarity prediction. In rela-
tion extraction, word pairs standing in a given re-
lation are mined from a corpus. The relations may
be pre-defined or, in the Open Information Extrac-
tion paradigm (Banko et al., 2007; Weikum and
Theobald, 2010), the relations themselves are also
learned from the text (e.g. in the form of text la-

bels). In relation classification, the task is to assign a
word pair to the correct relation, from a pre-defined
set of relations. Relational similarity prediction in-
volves assessing the degree to which a word pair
(a, b) stands in the same relation as another pair
(c, d), or to complete an analogy a : b :: c : ?. Rela-
tion learning is an important and long-standing task
in NLP and has been the focus of a number of shared
tasks (Girju et al., 2007; Hendrickx et al., 2010; Ju-
rgens et al., 2012).

Relation extraction and discovery has involved
generic semantic relations such as IS-A and
WHOLE-PART, but also corpus-specific relations
such as CEO-OF-COMPANY (Pantel and Pennac-
chiotti, 2006). Some datasets are task-specific, for
example paraphrasing the relation holding between
nouns in noun-noun compounds (Girju et al., 2007),
or analogy questions from the American SAT exam
for relational similarity (Turney et al., 2003).

Historically, approaches to relation learning have
generally been supervised or semi-supervised. Re-
lation extraction has used pattern-based approaches
such as A such as B, either explicitly (Hearst, 1992;
Kozareva et al., 2008; McIntosh et al., 2011) or
implicitly (Snow et al., 2005), although not all re-
lations are equally amenable to this style of ap-
proach (Yamada and Baldwin, 2004). Relation clas-
sification involves supervised classifiers (Chklovski
and Pantel, 2004; Snow et al., 2005; Davidov and
Rappoport, 2008). Relational similarity prediction
has also mostly used classification based on lexico-
syntactic patterns linking word pairs in text (Ó
Séaghdha and Copestake, 2009; Jurgens et al., 2012;
Turney, 2013), or generalised from manually crafted
resources such as Princeton WordNet (Fellbaum,
1998) using techniques such as Latent Semantic
Analysis (Turney, 2006; Chang et al., 2013).

Recently, attention has turned to using vector
space models of words for relation classification and
relational similarity. Distributional word vectors,
while mostly applied to measuring semantic simi-
larity and relatedness (Bullinaria and Levy, 2007),
have also been used for detection of relations such
as hypernymy (Geffet and Dagan, 2005; Kotlerman
et al., 2010; Lenci and Benotto, 2012; Weeds et al.,
2014; Rimell, 2014; Santus et al., 2014) and qualia
structure (Yamada et al., 2009). An exciting devel-
opment, and the inspiration for this paper, has been



the demonstration that vector difference over neu-
ral word embeddings (Mikolov et al., 2013c) can be
used to model word analogy tasks. This has given
rise to a series of papers exploring the DIFFVEC idea
in different contexts. The original analogy dataset
has been used to evaluate neural language models
by Mnih and Kavukcuoglu (2013) and also Zhila et
al. (2013), who combine a neural language model
with a pattern-based classifier. Kim and de Marn-
effe (2013) use word embeddings to derive represen-
tations of adjective scales, e.g. hot—warm—cool—
cold. Fu et al. (2014) similarly use embeddings to
predict hypernym relations, but instead of using a
single DIFFVEC, they cluster words by topic and
show that the hypernym DIFFVEC can be broken
down into more fine-grained relations. Neural net-
works have also been developed for joint learning
of lexical and relational similarity, making use of
the WordNet relation hierarchy (Bordes et al., 2013;
Socher et al., 2013; Xu et al., 2014; Yu and Dredze,
2014; Faruqui et al., 2015; Fried and Duh, 2015).

Another strand of work responding to the vec-
tor difference approach has analysed the structure
of neural embedding models in order to help ex-
plain their success on the analogy and other tasks
(Levy and Goldberg, 2014a; Levy and Goldberg,
2014b; Arora et al., 2015). However, there has
been no systematic investigation of the range of
relations for which the vector difference method
is most effective, although there have been some
smaller-scale investigations in this direction. Makrai
et al. (2013) divided antonym pairs into semantic
classes such as quality, time, gender, and distance,
and tested whether the DIFFVECs internal to each
antonym class were significantly more correlated
than random. They found that for about two-thirds
of the antonym classes, the DIFFVECs were signif-
icantly correlated. Necşulescu et al. (2015) trained
a classifier on word pairs using word embeddings
in order to predict coordinates, hypernyms, and
meronyms. Köper et al. (2015) undertook a system-
atic study of morphosyntactic and semantic relations
on word embeddings produced with word2vec
(“w2v” hereafter; see §3.1) for English and Ger-
man. They tested a variety of relations including
word similarity, antonyms, synonyms, hypernyms,
and meronyms, in a novel analogy task. Although
the set of relations tested by Köper et al. (2015)

is somewhat more constrained than the set we use,
there is a good deal of overlap. However, their evalu-
ation was performed in the context of relational sim-
ilarity, and they did not perform clustering or classi-
fication on the DIFFVECs.

3 General Approach and Resources

For our purposes, we define the task of lexical re-
lation learning to take a set of (ordered) word pairs
{(wi, wj)} and a set of binary lexical relations R =
{rk}, and map each word pair (wi, wj) as follows:
(a) (wi, wj) 7→ rk ∈ R, i.e. the “closed-world” set-
ting, where we assume that all word pairs can be
uniquely classified according to a relation in R; or
(b) (wi, wj) 7→ rk ∈ R ∪ {φ} where φ signifies the
fact that none of the relations in R apply to the word
pair in question, i.e. the “open-world” setting.

Our starting point for lexical relation learning
is the assumption that important information about
various types of relations is implicitly embedded in
the offset vectors. While a range of methods have
been proposed for composing the vectors of the
component words (Baroni et al., 2012; Weeds et al.,
2014; Roller et al., 2014), in this research we con-
sider solely DIFFVEC (i.e. w2 − w1) and hypoth-
esise that these DIFFVECs should capture a wide
spectrum of possible lexical contrasts. A second as-
sumption is that there exist dimensions, or direc-
tions, in the embedding vector spaces responsible for
a particular lexical relation. Such dimensions could
be identified and exploited as part of a clustering
or classification method, in the context of identify-
ing relations between word pairs or classes of DIFF-
VECs.

In order to test the generalisability of the DIFF-
VEC method, we require: (1) word embeddings, and
(2) a set of lexical relations to evaluate against. As
the focus of this paper is not the word embedding
pre-training approaches so much as the utility of the
DIFFVECs for lexical relation learning, we take a
selection of four pre-trained word embeddings with
strong currency in the literature, as detailed in §3.1.

For the lexical relations, we want a range of rela-
tions that is representative of the types of relational
learning tasks targeted in the literature, and where
there is availability of annotated data. To this end,
we construct a dataset from a variety of sources, fo-
cusing on lexical semantic relations (which are less



Name Dimensions Training data
w2v 300 100× 109

GloVe 200 6× 109

SENNA 100 37× 106

HLBL 200 37× 106

Table 1: The pre-trained word embeddings used in
our experiments, with the number of dimensions and
size of the training data (in word tokens).

well represented in the analogy dataset of Mikolov
et al. (2013c)), but also including morphosyntactic
and morphosemantic relations (see §3.2).

3.1 Word Embeddings

We consider four highly successful word embedding
models in our experiments: w2v (Mikolov et al.,
2013a; Mikolov et al., 2013b), GloVe (Pennington
et al., 2014), SENNA (Collobert et al., 2011), and
HLBL (Mnih and Hinton, 2009). Embeddings from
these sources exhibit a variety of influences, through
their use of different modelling tasks, linearity, man-
ner of relating words to their contexts, dimension-
ality, and scale and domain of training datasets (as
listed in Table 1).
w2v was developed to predict a word from its

context using the CBOW model, with the objective:

J =
1

T

T∑
i=1

log

exp

(
w>i

∑
j∈[−c,+c],j 6=0

w̃i+j

)
∑V

k=1 exp

(
w>k

∑
j∈[−c,+c],j 6=0

w̃i+j

)

where wi and w̃i are the vector representations for
the ith word (as a focus or context word, respec-
tively), V is the vocabulary size, T is the number
of tokens in the corpus, and c is the context window
size.1 Google News data was used to train the model.
We use the focus word vectors, W = {wk}Vk=1, nor-
malised such that each ‖wk‖ = 1.

The GloVe model is based on a similar bilinear
formulation, framed as a low-rank decomposition of

1In a slight abuse of notation, the subscripts of w play double
duty, denoting either the embedding for the ith token, wi, or kth

word type, wk.

the matrix of corpus coocurrence frequencies:

J =
1

2

V∑
i,j=1

f(Pij)(w>i w̃j − logPij)
2 ,

where wi is a vector for the left context, wj is a
vector for the right context, Pij is the relative fre-
quency of word j in the context of word i, and f is
a heuristic weighting function to balance the influ-
ence of high versus low term frequencies. The model
was trained on Wikipedia 2014 and the English Gi-
gaword corpus version 5.
HLBL is a log-bilinear formulation of an n-gram

language model, which predicts the ith word based
on context words (i−n, . . . , i−2, i−1). This leads
to the following training objective:

J =
1

T

T∑
i=1

exp(w̃>i wi + bi)∑V
k=1 exp(w̃>i wk + bk)

,

where w̃i =
∑n−1

j=1 Cjwi−j is the context embed-
ding, {Cj} are scaling matrices, and b∗ bias terms.

The final model, SENNA, was initially proposed
for multi-task training of several language process-
ing tasks, from language modelling through to se-
mantic role labelling. Here we focus on the statis-
tical language modelling component, which has a
pairwise ranking objective to maximise the relative
score of each word in its local context:

J =
1

T

T∑
i=1

V∑
k=1

max
[
0, 1− f(wi−c, . . . ,wi−1,wi)

+ f(wi−c, . . . ,wi−1,wk)
]
,

where the last c − 1 words are used as context, and
f(x) is a non-linear function of the input, defined as
a multi-layer perceptron.

We use Turian et al.’s word embeddings for
HLBL and SENNA, trained on the Reuters English
newswire corpus. In both cases, the embeddings
were scaled by the global standard deviation over
the word-embedding matrix, Wscaled = 0.1× W

σ(W ) .
Our expectation is that the differences in initial

training conditions will affect performance, e.g. we
expect the bidirectional models to work better than
the left-to-right ones, and log-linear models to out-
perform their non-linear counterparts, due to our use
of linear vector difference.



3.2 Lexical Relations
In order to evaluate the applicability of the DIFF-
VEC approach to relations of different types, we as-
sembled a set of lexical relations in three broad cat-
egories: lexical semantic relations, morphosyntactic
paradigm relations, and morphosemantic relations.
We constrained the lexical relations to be binary
and to have fixed directionality. Consequently we
excluded symmetric lexical relations such as syn-
onymy. We additionally constrained the dataset to
the words occurring in all four pre-trained embed-
dings. There is some overlap between our relations
and those included in the analogy task of Mikolov
et al. (2013c), but we include a much wider range
of lexical semantic relations, especially those stan-
dardly evaluated in the relation classification litera-
ture. We preprocessed the data to exclude all undi-
rected relations, remove duplicate triples and nor-
malise directionality.

The final dataset consists of 12,458 triples
〈relation,word1,word2〉, comprising 15 relation
types, extracted from SemEval’12 (Jurgens et al.,
2012), BLESS (Baroni and Lenci, 2011), the MSR
analogy dataset (Mikolov et al., 2013c), the dataset
of Tan et al. (2006a), Princeton WordNet (Fellbaum,
1998), Wiktionary, and a web source, as listed in Ta-
ble 2 and detailed below (wherein we define each
relation relative to the directed word pair (x, y)). We
will release this dataset on publication of this paper.

Lexical Semantic Relations
We constructed our dataset from the combina-

tion of the six top-level asymmetric lexical seman-
tic relations from SemEval-2012 Task 2 (Jurgens et
al., 2012) and three lexical semantic relations from
BLESS (Baroni and Lenci, 2011). There is partial
overlap between the two datasets, meaning that we
consolidated the relations as follows:
LEXSEMHyper: x names a class that includes entity

y; e.g. (animal, dog)
LEXSEMMero: y names a part of entity x or is an

instance of class x; e.g. (airplane, cockpit)
LEXSEMAttr: y names a characteristic quality,

property, or action of x; e.g. (cloud, rain)
LEXSEMCause: y represents the cause, purpose, or

goal of x or using x; e.g. (cook, eat)
LEXSEMSpace: y is a thing or action that is as-

sociated with x (a location or time); e.g.
(aquarium, fish)

LEXSEMRef: x is an expression or representation
of, or a plan or design for, or provides informa-
tion about, y; e.g. (song, emotion)

LEXSEMEvent: x refers to an action that entity y is
usually involved in; e.g. (zip, coat)

Here, we have merged the class relation from
SemEval’12 with the hypernymy relation from
BLESS, and the part–whole relation from Se-
mEval’12 with the meronym relation from BLESS.

Morphosyntactic Paradigm Relations
As morphosyntactic paradigm lexical relations,

we include four relations from the original Mikolov
et al. (2013c) DIFFVEC paper:
NOUNSP: y is the plural form (NNS, in Penn

tagset terms) of singular noun x (an NN); e.g.
(year, years)

VERB3: y is the 3rd person singular present-tense
verb form (VBZ) of base-form verb x (a VB);
e.g. (accept, accepts)

VERBPast: y is the past-tense verb form (VBD) of
base verb x (a VB); e.g. (know, knew)

VERB3Past: y is the past-tense verb form (VBD) of
3rd person singular present-tense verb form x
(a VBZ); e.g. (creates, created)

Morphosemantic Relations
The dataset also includes the following morphose-

mantic relations:
LVC: x is the light verb associated with noun y,

from the “leniently”-annotated dataset of Tan
et al. (2006b); e.g. (give, approval)

VERBNOUN: y is the nominalisation of verb x, as
extracted (exhaustively) from Princeton Word-
Net v3.0; e.g. (americanize, americanization)

PREFIX: y is x prefixed with the re bound mor-
pheme, as extracted (exhaustively) from Wik-
tionary; e.g. (vote, revote)

NOUNColl: x is the collective noun for noun y,
based on an online list;2 e.g. (army, ants)

4 Clustering

Assuming DIFFVECs are capable of capturing all
lexical relations equally, we would expect clustering
to be able to identify sets of word pairs with high
relational similarity, or equivalently clusters of sim-
ilar offset vectors. Under the additional assumption

2http://www.rinkworks.com/words/
collective.shtml



Relation Pairs Source
LEXSEMHyper 1173 SemEval’12 + BLESS
LEXSEMMero 2825 SemEval’12 + BLESS
LEXSEMAttr 71 SemEval’12
LEXSEMCause 249 SemEval’12
LEXSEMSpace 235 SemEval’12
LEXSEMRef 187 SemEval’12
LEXSEMEvent 3583 BLESS
NOUNSP 100 MSR
VERB3 99 MSR
VERBPast 100 MSR
VERB3Past 100 MSR
LVC 58 Tan et al. (2006b)
VERBNOUN 3303 WordNet
PREFIX 118 Wiktionary
NOUNColl 257 Web source

Table 2: The 15 lexical relations in our dataset.

that a given word pair corresponds to a unique lex-
ical relation (in line with our definition of the lex-
ical relation learning task in §3), a hard clustering
approach is appropriate. In order to test these as-
sumptions, we cluster our 15-relation closed-world
dataset in the first instance, and evaluate the result-
ing clusters against the lexical resources in §3.2.

As further motivation, consider Figure 1, which
presents the DIFFVEC space for 10 samples of each
class (based on a projection learned over the full
dataset). The samples corresponding to the verb–
verb morphosyntactic relations (VERB3, VERBPast,
VERB3Past) each form a tight cluster near the ori-
gin, spread amongst which are the verbal morphose-
mantic relations VERBNOUN and LVC. Similarly,
NOUNSP forms another tight cluster.

We cluster the DIFFVECs between all word
pairs in our dataset using spectral clustering
(Von Luxburg, 2007), a choice that was motivated by
the fact that it is a hard clustering algorithm that can
capture clusters of arbitrary geometric shape, and
has achieved superior results to other (hard) cluster-
ing methods over a variety of tasks (Ng et al., 2002).

Spectral clustering has two hyperparameters: (1)
the number of clusters; and (2) the pairwise simi-
larity measure for comparing DIFFVECs. We tune
the hyperparameters over development data, in the
form of 15% of randomly-sampled instances, select-
ing the configuration that maximises the V-Measure
(Rosenberg and Hirschberg, 2007). V-Measure is an
information-theoretic measure that combines home-
geneity and completeness, and is defined in terms
of normalised conditional entropy of the true classes

LEXSEMAttr
LEXSEMCause
NOUNColl
LEXSEMEvent

LEXSEMHyper

LVC
LEXSEMMero
NOUNSP

PREFIX
LEXSEMRef
LEXSEMSpace

VERB3

VERB3Past
VERBPast

VERBNOUN

Figure 1: t-SNE projection (Van der Maaten and
Hinton, 2008) of DIFFVECs for 10 sample word
pairs of each relation type, based on w2v. The in-
tersection of the two axes identify the projection of
the zero vector. Best viewed in colour.

given a clustering, and vice-versa:

V =
2× homogeneity × completeness

homogeneity + completeness

Our use of V-Measure is based on the findings of
Christodoulopoulos et al. (2010), who showed for
part-of-speech induction that out of seven clustering
evaluation measures, V-Measure is the most effec-
tive and least sensitive to the number of clusters.

To populate the affinity matrix for spectral clus-
tering, we scale using a Gaussian kernel:3

exp

(
−γ ×

dist (∆i,j ,∆k,l)

σ

)
,

where ∆i,j = wj − wi is the vector difference
between the embeddings of the ith and jth word
types, σ is the standard deviation of the corpus
dist (∆i,j ,∆k,l) values, and γ is a hyper-parameter
which determines the decay rate as the distance in-
creases. The distance metric, dist (∆i,j ,∆k,l) is Eu-
clidean distance, while γ affects how quickly the
score drops with distance: high γ values have a faster

3The Gaussian kernel introduces an extra non-linearity into
the formulation. In preliminary experiments, we found this to
outperform the basic cosine and Euclidean distances.
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Figure 2: Spectral clustering results, comparing
cluster quality (V-Measure) and the number of clus-
ters. DIFFVECs are clustered and compared to the
known relation types. Each line shows a different
source of word embeddings.

decay and effectively impose a threshold distance,
beyond which points are assigned a near-zero simi-
larity value. γ = 0.1 provided the best performance
over the development data, and is used in all experi-
ments.

Note that the results of spectral clustering de-
pend on random initialisation, so we ran several ex-
periments using the same parameters, and average
across them in the final results.

Figure 2 presents V-Measure values over the test
data for each of the four word embedding mod-
els. We show results for different numbers of clus-
ters, from N = 10 in increasing steps of 10, up to
N = 80 (beyond which the clustering quality dimin-
ishes).4 Observe that w2v achieves the best results,
with a V-Measure value of around 0.36,5 which is
relatively constant over varying numbers of clus-
ters. GloVe mirrors this result, but is consistently
below w2v at a V-Measure of around 0.31. HLBL
and SENNA performed very similarly, at a substan-
tially lower V-Measure than w2v or GloVe, closer
to 0.21.

One possible explanation for the relative order-

4Although 80 clusters� our 15 relation types, it should be
noted that the SemEval’12 classes each contain numerous sub-
classes, so the larger number may be more realistic.

5V-Measure returns a value in the range [0, 1], with 1 indi-
cating perfect homogeneity and completeness.

w2v GloVe HLBL SENNA
LEXSEMAttr 0.49 0.54 0.62 0.63
LEXSEMCause 0.47 0.53 0.56 0.57
LEXSEMSpace 0.49 0.55 0.54 0.58
LEXSEMRef 0.44 0.50 0.54 0.56
LEXSEMHyper 0.44 0.50 0.43 0.45
LEXSEMEvent 0.46 0.47 0.47 0.48
LEXSEMMero 0.40 0.42 0.42 0.43
NOUNSP 0.07 0.14 0.22 0.29
VERB3 0.05 0.06 0.49 0.44
VERBPast 0.09 0.14 0.38 0.35
VERB3Past 0.07 0.05 0.49 0.52
LVC 0.28 0.55 0.32 0.30
VERBNOUN 0.31 0.33 0.35 0.36
PREFIX 0.32 0.30 0.55 0.58
NOUNColl 0.21 0.27 0.46 0.44

Table 3: The entropy for each lexical relation over
the clustering output for each of the four word em-
beddings.

ing for the results of the four methods in Figure 2
is that, for the pre-trained vectors we use: (a) w2v is
trained over a larger corpus than GloVe, which is in
turn trained over a much larger corpus than SENNA
and HLBL; and (b) w2v has higher dimensional-
ity than the other methods. To determine whether
this is, indeed, the cause of the difference, we ad-
ditionally report on results for w2v and GloVe
over English Wikipedia (comparable to SENNA and
HLBL). For the two methods, we set the dimension-
ality to 300, and other parameters to default val-
ues. The results are presented in the plot as w2vwiki
and GloVewiki. While there is a drop in results for
both methods, both perform well above SENNA and
HLBL, and w2v still has a clear empirical advantage
over GloVe. As such, the superiority of w2v would
appear to be a true effect, based on which we focus
exclusively on w2v for the remainder of our experi-
ments .

To better understand these results, and the cluster-
ing performance over the different lexical relations,
we additionally calculated the entropy for each lex-
ical relation, based on the distribution of instances
belonging to a given relation across the different
clusters (and simple MLE). For each embedding
method, we present the entropy for the cluster size
where V-measure was maximised over the develop-
ment data. Since the samples are distributed non-
uniformly, we normalise entropy results for each
method by log(n) where n is the number of samples
in a particular relation.



Table 3 presents the entropy values for each rela-
tion and embedding, with the lowest entropy (purest
clustering) for each relation indicated in bold. Com-
bining the V-Measure and entropy results we can
see that the clustering does remarkably well, with-
out any supervision in terms of either the training of
the word embeddings6 or the clustering of the DIFF-
VECs, nor indeed any explicit representation of the
component words (as all instances are DIFFVECs).
While it is hard to calibrate the raw numbers, for the
somewhat related lexical semantic clustering task of
word sense induction, the best-performing systems
in SemEval-2010 Task 4 (Manandhar et al., 2010)
achieved a V-Measure of under 0.2.

Looking across the different lexical relation types,
the morphosyntactic paradigm relations (NOUNSP
and the three VERB relations) are by far the easiest,
with w2v notably achieving a perfect clustering of
the word pairs for VERB3. The lexical semantic re-
lations, on the other hand, are the hardest to capture
for all embeddings.

Looking in depth at the composition of the clus-
ters, taking w2v as our exemplar word embed-
ding (based on it achieving the highest V-Measure),
for VERB3 there was a single cluster consisting
of around 90% VERB3 word pairs. The remain-
ing 10% of instances tended to include a word
that was ambiguous in POS, leading to confusion
with VERBNOUN in particular. Example VERB3
pairs incorrectly clustered with other relations
are: (study, studies), (run, runs), (remain, remains),
(save, saves), (like, likes) and (increase, increases).
This polysemy results in the distance represented
in the vector difference for such pairs being above
the average for VERB3, and the word pairs conse-
quently being clustered with word pairs associated
with other cross-POS relations.

For VERBPast, a single relatively pure cluster
was generated, with minor contamination due to
semantic and syntactic ambiguity with word pairs
from lexical semantic relations such as (hurt, saw),
(utensil, saw), and (wipe, saw). Here, the noun saw
is ambiguous with a high-frequency past-tense verb,
and for the first and last example, the first word is
also ambiguous with a base verb, but from a dif-
ferent paradigm. A similar effect was observed for

6With the minor exception of SENNA, in that the word em-
beddings were indirectly learned using multi-task learning.

NOUNSP. This suggests a second issue: the words in
a word pair individually having the correct lexical
property (in terms of verb tense/form) for the lexi-
cal relation, but not satisfying the additional paradig-
matic constraint associated with the relation.

A related phenomenon was observed for
NOUNColl, where the instances were assigned to a
large mixed cluster containing word pairs where
word y referred to an animal, reflecting the fact that
most of the collective nouns in our dataset relate
to animals, e.g. (stand, horse), (ambush, tigers),
(antibiotics, bacteria). This is interesting from a
DIFFVEC point of view, since it shows that the
lexical semantics of one word in the pair can
overwhelm the semantic content of the DIFFVEC.

LEXSEMMero was split into multiple clus-
ters along domain lines, with separate clus-
ters for weapons, dwellings, vehicles, etc.
Other semantic relations were clustered in
similar ways, with one cluster largely made
up of (ANIMAL NOUN,MOVEMENT VERB)
word pairs, and another comprised largely of
(FOOD NOUN, FOOD VERB) word pairs. In-
terestingly, there was also a large cluster of
(PROFESSION NOUN, ACTION VERB) pairs.

Our clustering methodology could, of course,
be applied to an open-world dataset including
randomly-sampled word pairs, and the resultant
clusters examined to determine their relational com-
position, perhaps showing that relation discovery is
possible using word embeddings and DIFFVECs. In-
stead, however, we opt to investigate open-world re-
lation learning based on a supervised approach, as
detailed in the next section.

5 Classification

A natural question is whether we can accu-
rately characterise lexical relations based on DIFF-
VECs through supervised learning over the DIFF-
VECs. For these experiments we use the w2v
embeddings exclusively, and a subset of the
relations which is both representative of the
breadth of the full relation set, and for which
we have sufficient data for supervised training
and evaluation, namely: NOUNColl, LEXSEMEvent,
LEXSEMHyper, LEXSEMMero, NOUNSP, PREFIX,
VERB3, VERB3Past, and VERBPast.

We consider two applications: (1) a CLOSED-



WORLD setting similar to the unsupervised evalu-
ation, in which the classifier only encounters word
pairs which correspond to one of the nine relations;
and (2) a more challenging OPEN-WORLD setting
where random word pairs — which may or may not
correspond to one of our relations — are included
in the evaluation. For both settings, we further in-
vestigate whether there is a lexical memorization ef-
fect for a broad range of relation types of the sort
recently identified by Weeds et al. (2014) and Levy
et al. (2015) for hypernyms, by experimenting with
disjoint training and test vocabulary.

5.1 CLOSED-WORLD Classification

For the CLOSED-WORLD setting, we train and test a
multiclass classifier on datasets comprising 〈∆i,j , r〉
pairs, where r is one of our nine relation types.

We use an SVM with a linear kernel and re-
port results from 10-fold cross-validation in Table 4.
Most of the relations, even the most difficult ones
from our clustering experiment, are classified with
very high precision and recall. That is, with a sim-
ple linear transformation of the embedding dimen-
sions, we are able to achieve near-perfect results.
The PREFIX relation achieved markedly lower re-
call, due to large differences in the predominant
usages associated with the respective words (e.g.,
(union, reunion), where the vector for union is heav-
ily biased by contexts associated with trade unions,
but reunion is heavily biased by contexts relating
to social get-togethers; and (entry, reentry), where
entry is associated with competitions and entrance
to schools, while reentry is associated with space
travel). Somewhat surprisingly, given the small di-
mensionality of the input (w2v vectors of size 300),
we found that the linear SVM slightly outperformed
a non-linear SVM using an RBF kernel.

As a baseline, we first cluster the data as de-
scribed in §4. We run the clusterer several times over
the 9-relation data to select the optimal V-Measure
value based on the development data, corresponding
in this case to 50 clusters. We assign to each clus-
ter the majority class based the training instances,
and evaluate the resultant labelling for the test in-
stances. The linear SVM achieves a higher F-score
than the baseline on almost every relation, partic-
ularly on LEXSEMHyper, and the lower-frequency
NOUNSP, NOUNColl, and PREFIX.

Relation Baseline SVM
P R F P R F

LEXSEMHyper 0.60 0.61 0.60 0.96 0.91 0.93
LEXSEMMero 0.93 0.88 0.90 0.97 0.98 0.97
LEXSEMEvent 0.82 0.93 0.87 0.97 0.99 0.98
NOUNSP 0.00 0.00 0.00 0.83 0.83 0.83
VERB3 1.00 0.98 0.99 0.99 0.97 0.98
VERBPast 0.80 0.77 0.78 0.97 1.00 0.98
VERB3Past 1.00 0.98 0.99 1.00 0.97 0.98
PREFIX 0.00 0.00 0.00 0.99 0.70 0.82
NOUNColl 0.15 0.27 0.19 0.98 0.91 0.95
MicroAvg. 0.82 0.86 0.84 0.97 0.97 0.97

Table 4: Precision (P), recall (R) and F-score (F)
for CLOSED-WORLD classification, for a baseline
method based on clustering + majority-class la-
belling, and a multiclass linear SVM trained on
DIFFVEC inputs.

5.2 OPEN-WORLD Classification

We now turn to a more challenging evaluation set-
ting: a test set including word pairs drawn at ran-
dom. This aims to illustrate whether a DIFFVEC-
based classifier is capable of differentiating related
word pairs from noise, and can be applied to open
data to learn new related word pairs.

For these experiments, we train a binary classifier
for each relation type, using 2

3 of our relation data for
training and 1

3 for testing. The test data is augmented
with an equal quantity of noise samples, generated
as follows:
(1) we first sample a seed lexicon by drawing words

proportional to their frequency in Wikipedia;7

(2) next, we take the Cartesian product over pairs of
words from the seed lexicon;

(3) finally, we sample word pairs uniformly from
this set.

This procedure generates word pairs that are repre-
sentative of the frequency profile of our corpus.

We train 9 binary SVM classifiers with RBF
kernels on the training partition, and evaluate on
our randomly augmented test set. Fully annotat-
ing our random word pairs is prohibitively expen-
sive, so instead, we manually annotated only the
word pairs which were positively classified by one
of our models. The results of our experiments are
presented in the left half of Table 5, in which
we report on results over the combination of the
original test data from §5.1 and the random word

7Filtered to consist of words for which we have embeddings.



Relation Orig +neg
P R P R

LEXSEMHyper 0.95 0.92 0.99 0.84
LEXSEMMero 0.13 0.96 0.95 0.84
LEXSEMEvent 0.44 0.98 0.93 0.90
NOUNSP 0.95 0.68 1.00 0.68
VERB3 0.75 1.00 0.93 0.93
VERBPast 0.94 0.90 0.97 0.84
VERB3Past 0.76 0.95 0.87 0.93
PREFIX 1.00 0.29 1.00 0.13
NOUNColl 0.43 0.74 0.97 0.41

Table 5: Precision (P) and recall (R) for OPEN-
WORLD classification, using the binary classifier
without (“Orig”) and with (“+neg”) negative sam-
ples .

pairs, noting that recall (R) for OPEN-WORLD takes
the form of relative recall (Pantel et al., 2004)
over the positively-classified word pairs. The re-
sults are much lower than for the closed-word set-
ting (Table 4), most notably in terms of precision
(P). For instance, the random pairs, (have,works),
(turn, took), (works, started) were incorrectly clas-
sified as VERB3, VERBPast and VERB3Past, respec-
tively. That is, the model captures syntax, but lacks
the ability to capture lexical paradigms, and tends to
overgenerate.

5.3 OPEN-WORLD Training with Negative
Sampling

To address the problem of incorrectly classify-
ing random word pairs as valid relations, we re-
train the classifier on a dataset comprising both
valid and automatically-generated negative distrac-
tor samples. The basic intuition behind this approach
is to construct samples which will force the model to
learn decision boundaries that more tightly capture
the true scope of a given relation. To this end, we
automatically generated two types of negative dis-
tractors:
opposite pairs: generated by switching the order of

word pairs, Opposw1 ,w2 = word1 − word2.
This ensures the classifier adequately captures
the asymmetry in the relations.

shuffled pairs: generated by replacing w2 with
a random word from the same relation,
Shuffw1 ,w2 = word′2 − word1. This is tar-
geted at relations that take specific word classes
in particular positions, e.g., (VB,VBD) word
pairs, so that the model learns to encode the re-

lation rather than simply learning the properties
of the word classes.

Both types of distractors are added to the training
set, such that there are equal numbers of valid rela-
tions, opposite pairs and shuffled pairs.

After training our classifier, we evaluate its pre-
dictions in the same way as in §5.2, using the same
test set combining related and random word pairs.8

The results are shown in the right half of Table 5 (as
“+neg”). Observe that the precision is much higher
and recall somewhat lower compared to the classi-
fier trained with only positive samples. This follows
from the adversarial training scenario: using nega-
tive distractors results in a more conservative clas-
sifier, that correctly classifies the vast majority of
the random word pairs as not corresponding to a
given relation, resulting in higher precision at the ex-
pense of a small drop in recall. Overall this leads to
higher F-scores, as shown in Figure 3, other than for
hypernyms (LEXSEMHyper) and prefixes (PREFIX).
For example, the standard classifier for NOUNColl
learned to match word pairs including an animal
name (e.g., (plague, rats)), while training with neg-
ative samples resulted in much more conservative
predictions and consequently much lower recall.
The classifier was able to capture (herd, horses) but
not (run, salmon), (party, jays) or (singular, boar)
as instances of NOUNColl, possibly because of poly-
semy. The most striking difference in performance
was for LEXSEMMero, where the standard classi-
fier generated many false positive noun pairs (e.g.
(series, radio)), but the false positive rate was con-
siderably reduced with negative sampling.

5.4 Lexical Memorization

Weeds et al. (2014) and Levy et al. (2015) recently
showed that supervised methods using DIFFVECs
achieve artificially high results as a result of “lexical
memorization” over frequent words associated with
the hypernym relation. For example, (animal, cat),
(animal, dog), and (animal, pig) all share the super-
class animal, and the model thus learns to classify as
positive any word pair with animal as the first word.

To address this issue, we randomly split our
CLOSED-WORLD vocabulary into two lexically-
disjoint partitions, which we call training and test.

8But noting that relative recall for the random word pairs is
based on the pool of positive predictions from both models.
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Figure 3: F-score for OPEN-WORLD classification,
comparing models trained with and without negative
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Relation Split Overlap
P R F P R F

LEXSEMHyper 0.87 0.71 0.79 0.93 0.90 0.91
LEXSEMMero 0.89 0.95 0.92 0.94 0.97 0.95
LEXSEMEvent 0.89 0.96 0.92 0.95 0.98 0.97
NOUNSP 0.7 0.33 0.45 0.9 0.43 0.58
VERB3 1.00 1.00 1.00 1.00 1.00 1.00
VERBPast 0.96 1.00 0.98 1.00 1.00 1.00
VERB3Past 1.00 1.00 1.00 1.00 1.00 1.00
PREFIX 1.00 0.71 0.83 1.00 0.54 0.70
NOUNColl 0.94 0.63 0.75 0.96 0.86 0.91
MicroAvg. 0.89 0.89 0.89 0.94 0.94 0.94

Table 6: Precision (P), recall (R) and F-score (F)
for CLOSED-WORLD classification, where a multi-
class linear SVM was trained on DIFFVEC inputs
with/without overlap.

We compare the results of classification using two
training datasets. The first (“Split”) contains la-
belled pairs from the original CLOSED-WORLD

where both words occur in the training partition.
The second (“Overlap”) relaxes the lexical parti-
tioning by adding labelled pairs from the original
CLOSED-WORLD where one word is in the train-
ing partition and the other in the test partition. The
test dataset is the same in both cases, namely all
labelled pairs from the original CLOSED-WORLD

where both words are in the test partition. For the
Overlap setting, we also downsample the training set
to the same size as the training data for the Split set-
ting. We train a multiclass classification model over
the data, as described in §5.1. Results are shown in
Table 6.

The results show that most of the relations
maintain good classification accuracy with mini-

mal degradation from the Overlap to the Split set-
ting, with the exception of LEXSEMHyper, NOUNSP,
and NOUNColl. Interestingly, the biggest losses for
LEXSEMHyper and NOUNColl are in recall, suggest-
ing lexical memorization may play a role in retriev-
ing triples with words seen in training. Other rela-
tions, notably LEXSEMMero, LEXSEMEvent, and the
morphosyntactic verb paradigm relations show sim-
ilar classification accuracy under the Overlap and
Split conditions.

To measure the extent of lexical memorization for
each relation, we calculated: (1) the difference in
F-score between the “Overlap” and “Split” experi-
ments; and (2) the average number of training in-
stances containing each of the two words in test in-
stances associated with that relation. Our hypothesis
here is that the greater the average representation of
test instances in the training data, the greater the dif-
ference in F-score, and that there will be a direct cor-
relation between the degree of lexical overlap and
the inflation in F-scores. The Pearson’s correlation
across the 9 relations was r = 0.66, lending strong
support to this hypothesis.

We also report on an OPEN-WORLD experiment
(see §5.2-5.3) in a split vocabulary setting. This ex-
periment is analogous to those test sets in Levy et
al. (2015) that include random pairs as confounders
for the target hypernym relation. Once again, we first
split our vocabulary into training and test portions, to
ensure there is no overlap between training and test
vocabulary. We then train classifiers with and with-
out negative sampling (§5.3), incrementally adding
the random word pairs from §5.2 to the test data
(from no random word pairs to five times the origi-
nal size of the test data) to investigate the interaction
of negative sampling with greater diversity in the test
set when there is a split vocabulary. The results are
shown in Figure 4.

Observe that the precision for the standard classi-
fier decreases rapidly as more random word pairs are
added to the test data. In comparison, the precision
when negative sampling is used shows only a small
drop-off, indicating that negative sampling is effec-
tive at maintaining precision in an OPEN-WORLD

setting even when the training and test vocabulary
are disjoint. This benefit comes at the expense of re-
call, which is much lower when negative sampling
is used (note that recall stays relatively constant as
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Figure 4: Evaluation of the OPEN-WORLD model
when trained on split vocabulary, for varying num-
bers of random word pairs in the test dataset (ex-
pressed as a multiplier relative to the number of
CLOSED-WORLD test instances).

random word pairs are added, as the vast majority of
them don’t correspond to any relation). At the maxi-
mum level of random word pairs in the test data, the
F-score for the negative sampling classifier is higher
than for the standard classifier.

5.5 Comparison with a Count-based Method
We also consider a “count”-based vector space
model, to determine the generalisability of DIFF-
VEC-based relation classification. To train the
model, we evaluate a word co-occurrence matrix
over the same English Wikipedia corpus as used in
§4 to calibrate w2v and GloVe over the same train-
ing data and dimensionality. Specifically, we use a
bag-of-words context window of 3 to either side of
the target word, and restrict our vocabulary to terms
which occur at least 5 times in the corpus. We trun-
cate the context matrix to the 10,000 most frequent
words (similarly to Pennington et al. (2014)), scale
the frequencies with the function log(freqij + 1),
and finally run SVD over the context matrix. The
representation of each target word is based on the
first 300 columns in the output, to produce a repre-
sentation of the same size as w2v.

We built a CLOSED-WORLD multi-class classi-
fier in the same manner as described in §5.1, over
the full dataset (with lexical overlap). The results are
presented in Table 7, and should be contrasted with
those from Table 4.

Relation P R F
LEXSEMHyper 0.96 0.22 0.37
LEXSEMMero 0.78 0.97 0.87
LEXSEMEvent 0.76 0.98 0.85
NOUNSP 0.00 0.00 0.00
VERB3 0.00 0.00 0.00
VERBPast 0.00 0.00 0.00
VERB3Past 1.00 0.01 0.02
NOUNColl 0.00 0.00 0.00
MicroAvg. 0.74 0.78 0.71

Table 7: Precision (P), recall (R) and F-score (F)
for CLOSED-WORLD classification for count-based
SVD model.

The first thing to notice is that the overall results
are substantially lower than those for w2v. Looking
at the breakdown across the different relations, we
can see that the classifier heavily favours the lex-
ical semantic relations (in particular LEXSEMMero
and LEXSEMEvent), so much so that only one test
instance is assigned to any of the other relations
(namely VERB3Past). That is, the Diffw1 ,w2method
works considerably less impressively over vectors
learned through a count-based method. We observed
similar results using non-negative sparse embed-
dings (Murphy et al., 2012).

6 Conclusions

This paper is the first to test the generalizability
of the vector difference approach across a broad
range of lexical relations (in raw number and also
variety). Using clustering we showed that many
types of morphosyntactic and morphosemantic dif-
ferences are captured by DIFFVECs, but that lexical
semantic relations are captured less well, a finding
which is consistent with previous work (Köper et
al., 2015). In contrast, classification over the DIFF-
VECs works extremely well in a closed-world set-
ting, showing that dimensions of DIFFVECs encode
lexical relations. Classification performs less well
over open data, although with the introduction of
automatically-generated negative samples, the re-
sults improve substantially. Negative sampling also
improves classification when the training and test
vocabulary are split to minimise lexical memoriza-
tion. Overall, we conclude that the DIFFVEC ap-
proach has impressive utility over a broad range of
lexical relations, especially under supervised classi-
fication.
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Montréal, Canada.

Omer Levy and Yoav Goldberg. 2014a. Linguistic regu-
larities in sparse and explicit word representations. In
Proceedings of the 18th Conference on Natural Lan-
guage Learning (CoNLL-2014), pages 171–180, Bal-
timore, USA.

Omer Levy and Yoav Goldberg. 2014b. Neural word em-
beddings as implicit matrix factorization. In Advances
in Neural Information Processing Systems 26 (NIPS-
14).

Omer Levy, Steffen Remus, Chris Biemann, Ido Dagan,
and Israel Ramat-Gan. 2015. Do supervised distribu-
tional methods really learn lexical inference relations?
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics — Human Language Technologies
(NAACL HLT 2015), pages 970–976, Denver, USA.
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