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1.Introduction

» Speaker recognition: recognize the identity of a speaker

from speech.
» Categorization
= verification and identification
= text independent and text dependent

= mono-lingual, cross-lingual and multi-lingual

l
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1.Introduction

» Mono-lingual: the language of training and testing is the

Same

» Cross-lingual: speaker model is trained in one language

and tested with a speech in another language

» Multi-lingual: training Is done in one language and tested

with a speech of multiple language.
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1.Introduction

» Language mismatch between training and testing data

leads to significant performance degradation

Table 1
Chinese Chinese Chinese 2.64
Chinese Chinese Uyghur 14.80

» In this report, we give overall introduction to the current
research works of cross-lingual and multi-lingual speaker
recognition
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2.Feature level solution

1) Vocal source features for bilingual speaker identification

--JiangLin Wang, Michael T. Johnson, ChinaSip, 2013

» Authors captured speaker-specific characteristics from their vocal
excitation patterns using:

« RPCC: Residual Phase Cepstrum Coefficients
« GLFCC: Glottal Flow Cepstrum Coefficients
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2.Feature level solution

» Data: speech of twenty-four bilingual speakers extracted from 2004
NIST SRE corpus.

» Considered Languages: Arabic, Mandarin, Russian and Spanish.

» UBM: trained using data from all twenty-four non-English speakers.
» GMM: adapted from UBM using individual English speech samples
» ldentification: performed using alternative language speech samples.

» Baseline features: MFCC
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2.Feature level solution

» Accuracy with increasing number of mixtures
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2.Feature level solution

» Accuracy of individual features

Table 2
MFCC 71.2
GLFCC 72.3
RPCC 67.7

» GLFCC has the highest accuracy

» RPCC gives the highest accuracy with the small mixture number.

_. Hli ‘
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2.Feature level solution

2) Kannada Language Parameters for Speaker ldentification

--Nagaraja B.G. , 1.J. Image, Graphics and Signal Processing, 2013
» Feature: MFCC feature

» Considered languages: English, Hindi and Kannada (regional

language)

» The speaker utters a word in English, there is no much pause in the

speech signal, but when he/she pronounces the corresponding word

In Kannada there is a long pause in the speech signal |
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2.Feature level solution
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2.Feature level solution

» The presence of ottakshara (CCV akshara like, /gga/ in /agga), arka
(refers to a specific /r/ in consonant clusters) and
anukaranavyayagalu (/julujulu/) leads to long pause and hence less

number of energy frames in Kannada words.

» In order to alleviate this problem, a new database was created using
the same speakers in Kannada language where words which are free

from ottakshara, arka and anukaranavyayagalu



2.Feature level solution
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2.Feature level solution
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2.Feature level solution

3) Combination of Features for Multilingual Speaker Identification

with the Constraint of Limited Data

--Nagaraja B.G., 1.J. of Computer Applications,2013
» Feature: combined features of MFCC and LPCC

» Considered language: English, Hindi and Kannada (regional

language)

» Data: set of 30 speakers



2.Feature level solution
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2.Feature level solution

Results of combined features of MFCC and LPCC
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3.Model level solution

1) ENGLISH-CHINESE BILINGUAL TEXT-INDEPENDENT
SPEAKER VERIFICATION

---Bin Ma and Helen Meng, ICASSP 2004

» Considered languages: English and Cantonese

» Data: self designed and collected CUHK bilingual speech corpus
Including prompts for commands and questions of personalized

Information

» Model: GMM trained with utterances from both languages.



3.Model level solution
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3.Model level solution

2) THE EFFECT OF LANGUAGE FACTORS FOR ROBUST
SPEAKER RECOGNITION

---Liang Lu, ICASSP 2009
» Considered languages: 18 languages including English

» Data: The Oregon Graduate Institute (OGI) multi-language corpus
2004 and 2008 NIST SRE data

» Model: Extend JFA model with language factors.
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3.Model level solution

» Language factor was enrolled based on the conventional joint factor

analysis.

» Extend JFA model with language factors

M=m+Bg+Vy+Dz+Ux
: Speaker’s GMM mean super vector

: speaker and language-independent supervector,

: low-rank rectangular transformation matrix

: language factors.
* BB*: language subspace.
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3.Model level solution

» Language subspace estimation
a) remove speaker and session attribute of the multi-language data

b) U=0, V=0 and D=0: assuming the speaker factors be averaged out because of

the sufficient amount of data of each language.

¢) Randomly initialize B

d) Calculate P(g(1)|x(1): Gaussian mean £ ({) "*BX~1F (1) and variance
E~'=1+B T 'N()B

e) B i1sre-estimated via EM iteration

1:Im§§1;{ Prnae Ly ()’ + Bg, Z)
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3.Model level solution

» Language factor compensation

 Training phase: the language factors of training utterances were

removed from the models

 Testing phase: compensation was performed in the model level,

namely:

P(Em|Mm. + th) J
P[Xu;r ng T th)

(X M )= %lng[



3.Model level solution
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4.Score level solution

1) THE EFFECT OF LANGUAGE FACTORS FOR ROBUST
SPEAKER RECOGNITION

---Liang Lu, ICASSP 2009
» Considered languages: 18 languages including English

» Data: The Oregon Graduate Institute (OGI) multilanguage corpus
2004 and 2008 NIST SRE data

» Model: Extend JFA model with language factors.
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4.Score level solution

» Score level fusion was made as follows:
S( X )= el (X, )+ - afin, (X, )

* a c [0,1]: weight parameter

,



e cooam——

4.Score level solution

S st English trails non-English trails
vetems
EER DCF EER DCF
Bazeline 7.84% 372 11.42%  .566
LEC only 7.11% 328 9.8% 417
e‘ge“;;?““ﬂs 5.03% 223 11.19%  .412
iEi’nﬂlﬂt’Eﬂfﬁ;l 5.13% 226 11.19%  .408
Combination o 24, 218 9.04% 374

in score level

y
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4.Score level solution

2) LANGUAGE NORMALIZATION FOR BILINGUAL SPEAKER
RECOGNITION SYSTEMS

---Murat Akbacak, John H.L. Hansen, ICASSP, 2007
» Considered languages: English and Spain
» Data: Miami Corpus
» Model: GMM

IJ
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4.Score level solution

%* Baseline system (B2): merges language-dependent systems’ outputs
via score fusion
A" = argmon [p(0|An Ene) Weng + PO[An gpn ) Wapn]

{<ns IV

* Wgng,-Wspn: fusion weights, optimized using development set
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4.Score level solution

a) Normalization at the utterance level: LID scores corresponding to

each language are used as fusion weights.

A = s 5( Ol 2g) 8 Bng|0)+ 5(0| A 30) pl Sprf )

» the probability of the event that the utterance is spoken in language
L is used to weight the likelihood score coming from language

dependent speaker recognition system
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4.Score level solution

b) Normalization at the segment level: language-dependent speaker

recognition system outputs are merged at the segment level.

M
S(ﬂ“) — ZP(GéMﬂ,Eﬂg) Wi Bng + P(Gé|ﬁ%,3m} LLERo

=1

» M: represents the number of segments
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4.Score level solution

» segments corresponding to phones existing in both English and Spanish

acoustic spaces are weighted more
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Fig 2. Exampleto segment-based normalization for a Spanish utterance with its spectrogram (a), phonetic transcription (b), and normalization
weights (c). Thick and thin lines correspond to w4 8 and We Eng Values respectively

»



T SSTEE——

4.Score level solution

» Experimental result:

Exp. Train Test B2 [ID-norm | PR-norm
3 Spn Eng | 8349% | 8349% 34.832%
4 Eng Spn | 7031% | T0O31% 74.31%
5 Eng +3pn | Eng | 81.22% | 2213% 33.21%
& Eng +3pn | Spn | 30.05% | 2132% 3237%
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