A Simple Overview of Monaural Speech Enhancement

——focusing on the case of additive independent noise

ChenChen

2021.5.20

景

- 问题描述
- 方法分类
- 典型算法

问题描述

- 背景
 - 语音混杂着噪声——如何获取干净的语音?
- 目的
 - perceived quality 感知质量
 - intelligibility 清晰度和可理解性
- Our focus
 - denoise

数学模型

- 前提
 - the noise is additive and independent of the clean speech
- 模型
 - 带噪语音信号序列是原始语音信号序列和噪音信号序列之和

$$s(k) = f(s(k-1), \dots, s(k-K), \mathbf{w}) + v(k)$$
$$y(k) = s(k) + n(k)$$

语音的特性

- 非线性&非平稳性
 - 音素内和音素之间的快速片段过渡
 - 清音期间的湍流激励
 - 浊音期间的声门打开/闭合
- 线性&平稳性
 - 短时线性时不变
 - 短时平稳信号

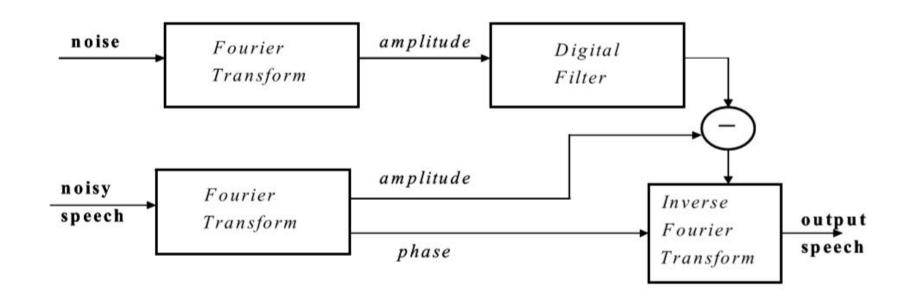
方法分类

- Spectral Subtraction/Filtering Techniques
 - Spectral Subtraction (SS)
 - Wiener filtering
 - Kalman Filtering
 - Signal Subspace approach
- Neural Network Based Techniques

Spectral Subtraction (SS)

• 前提: Speech and noise are assumed to be uncorrelated

• 思想: 整体的短时能量谱减去噪声的短时能量谱



Spectral Subtraction (SS)

- 优势
 - 简单、有效、直观
- 缺陷

- $\left|\hat{S}(\omega)\right|^{2} = \begin{cases} \left|Y(\omega)\right|^{2} \left|\hat{N}(\omega)\right|^{2} & \text{if } \left|Y(\omega)\right|^{2} > \left|\hat{N}(\omega)\right|^{2} \\ 0 & \text{otherwise} \end{cases}$
- $\hat{s}(k) = IFFT \left[\left| \hat{S}(\omega) \right| e^{j \arg(Y(\omega))} \right]$
- 没有估计原始相位信息,而使用混合信号的相位信息做逆变换,造成失真
- 对相减结果出现的负值直接置零,转换回时域后引入"音乐噪声"
- 拓展方向
 - Spectral Subtraction With Oversubtraction Model
 - Non-Linear Spectral Subtraction

Spectral Subtraction (SS)

Spectral Subtraction With Oversubtraction Model

•
$$\alpha$$
:过減因子
• β :谱下限
$$|\hat{S}(\omega)|^2 = \begin{cases} |Y(\omega)|^2 - \alpha |\hat{N}(\omega)|^2 \text{ if } |Y(\omega)|^2 - |\hat{N}(\omega)|^2 > \beta |\hat{N}(\omega)|^2 \\ \beta |\hat{N}(\omega)|^2 \text{ otherwise} \end{cases}$$

- Non-Linear Spectral Subtraction
 - Φ is a non-liner function

$$\left| \hat{N}(\omega) \right|_{nl}^{2} = \Phi\left(\max_{over M \ frames} \left(\left| \hat{N}(\omega) \right|^{2} \right), R_{post}(\omega), \left| \hat{N}(\omega) \right|^{2} \right)$$

$$R_{post}(\omega) = \left(\left| Y(\omega)^{2} \right| / \left| N(\omega)^{2} \right| \right) - 1$$

Wiener filtering

$$\frac{x = s + v}{\longrightarrow} h \longrightarrow y = \hat{s}$$

• 前提:

• 语音和噪声均为广义平稳过程且知它们的二阶统计特性

• 思想:

- 利用信号和噪音的自相关函数来获得最小均方误差(MMSE)意义下对线性滤波器最优预测
 - 本质上是一个线性最小均方差估计器(LMMSE estimator)

• 限制

- 维纳滤波器是在一维平稳状态下的线性最优估计器,只有输入信号是统计意义上是平稳信号时,其增益函数解才是最优解
- 仅仅考虑了量测方程,并没有关心信号本身的变化规律

Kalman filtering

• 前提

- 动力学模型是线性的,量测模型也是线性的
- 状态噪声和量测噪声均为零均值的白噪声
- 两种噪声,以及噪声与状态之间互不相关

• 思想

• 粗略地讲,Kalman filter就是一种可以recursively执行的,结合了线性系统动态方程的Wiener filter。

Extended Kalman filtering

$$s(k) = f(s(k-1), \dots, s(k-K), \mathbf{w}) + v(k)$$
$$y(k) = s(k) + n(k)$$

- 模型
 - 语音时域模型为非线性自回归模型
 - v(k) 是状态方程中的过程噪音,通常认为是白噪声
- 思想
 - 用一个时变线性函数作为非线性函数f(·)的近似

Signal Subspace approach

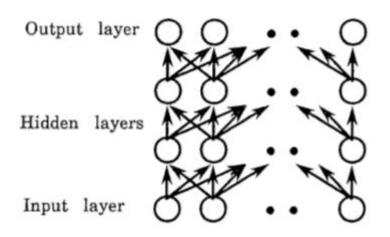
- 前提
 - Assuming the signal and noise are stationary
- 思想
 - Decompose the vector space of the noisy signal into a signal-plusnoise subspace and a noise subspace.
 - Enhancement is performed by removing the noise subspace and estimating the clean signal from the remaining signal subspace.
- 缺陷:
 - 子空间正交的假设在实际情况下并不精确
 - 对非平稳噪声的效果较差

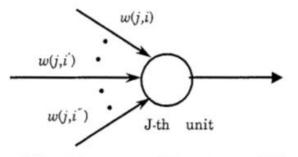
Neural Network Based Approaches

- Neural Networks as nonlinear filters mapping the noisy speech to clean speech in the time domain or in different domains
- A time variant model can be achieved by creating different fixed models for corresponding dynamical regimes of the signals and switching between these models during the speech enhancement process.

The Tamura approach

- 前提
 - availability of a clean speech training set
 - additive noise (non-stationary)
- 结构
 - the input and output of the network is given by the waveform itself,
 the units on the output and input layers are all linear units
 - Learning by Error Back-Propagation
- 缺陷
 - Attenuates many high frequency components in the actual speech

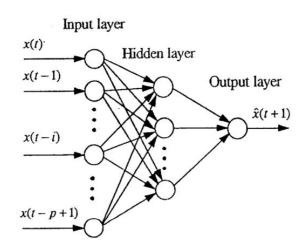




J-th unit's output = $f(\sum w(j,i)o(i) + \theta(j))$,

where f(x) = 1/(1 + exp(-x)) is the sigmoid function, $\theta(j)$, the bias value of j-th unit and w(j,i), the link weight from the i-th unit to the j-th unit

Speech Signal Restoration Using an Optimal Neural Network Structure



目标

 Select the optimal coniplexity of the network structure so that the network can remove the noise without distorting the original speech signal

• 思路

- Use a **feedforward neural network with one hidden layer** as a nonlinear predictive filter.
- The hyperbolic tangent functions are used as the nonlinear transfer function of the hidden nodes and the transfer function of the output layer node is linear.
- Apply the Predictive Minimum Description Length (PMDL) principle to determine the optimal number of input and hidden nodes.

NPHMM Neural Predictive Hidden Markov Model

• 前提

the nonlinear and nonstationarity nature of speech

• 思路

- NPHMM is a nonlinear autoregressive process whose time-varying parameters are controlled by a hidden markov chain, speech is the output of a NPHMM.
- Given some speech data for training, the parameter of NPHMM is estimated by a learning algorithm based on the combination of **Baum-Welch algorithm** and a neural network learning algorithm using the **back propagation algorithm**.
- The Extendend Kalman Filter (EKF) technique, involving an autoregressive model for each class, can be used to provide the maximum-likelihood estimation for speech.

Denoise Auto Encoder

- 前提
 - DO NOT require any such apriori conditions to be met when applying the enhancement
- 结构
 - Use a deep neural network (DNN) with multiple layers of fully connected neurons
- 目标
 - Estimate the masks that give the desired clean speech spectra after multiplying the noisy spectra (masking)
 - Estimate clean speech spectra directly (mapping)
- 拓展
 - CDAE
 - the use of a convolutional neural network (CNN) as a convolutional denoising autoencoder

Other NN Based Approaches

- RNPHMM(Recurrent Neural Predictive Hidden Markov Model)
 - The nonlinear prediction model is based on a Recurrent Neural Network
 - The unknown parameters are estimated by a learning algorithm derived from the Baum-Welch and RNN back-propagation algorithms
- Employing time delay neural network for Mel-scaled spectral estimation
- Multi-layer perceptron (MLP) neural network estimate the log spectra of speech
- Dual EKF
 - A neural network based time-domain method removing nonstationary and colored noise from speech.
 - the availability of only the noisy signal