genCNN:A Convolutional Architecture for
word sequence prediction

RS
2015-03-25

A Convolutional Architecture for word sequence prediction

® Architecture

“ee BCNN

BCNN

prediction: “sandwich”?

f

f

aCNN

|

f

I LI |
history: / / I was starving after this long meeting, so I

rushed to wal-mart to buy a

Figure 1: The overall diagram of a genCNN. Here “/” stands for a zero padding. In this example,
each CNN component covers 6 words, while in practice the coverage is 30-40 words.

As shown in Figure 1, genCNN is overall recursive, consisting of CNN-based processing units of two

types:

e aCNN as the “front-end”, dealing with the history that is closest to the prediction;

e 3CNNs (which can repeat), in charge of more “ancient™ history.

Together, genCNN takes history ey.; of arbitrary length to predict the next word e;.; with probability

plet+1 |€1:4:0),

(1)

based on a representation ¢(ey.;: ©) produced by the CNN, and a |V|-class soft-max:

plei+1lers; ©) x e

/-‘;;+1 ¢(el:t)+be,+l]

(2)

prediction for e,
If ET g 11

Figure 4: genCNN with recursive structure.

A Convolutional Architecture for word sequence prediction

probability of next word

® Architecture “dinner” t T o 1
“breakfast” I]
“US”
“thE” %

what did you have for

A 3-layer aCNN

i &
g O O & &

Time-Flow Time-Arrow Gating

For sentence input x={x, - - - , X7}, the feature-map of type-f on Layer-/ is
if f € TIME-FLOW:

e, 6,1) (= ¢,
2D (x) = o(wig2{ ™) + 8", (3)
if f € TIME-ARROW:
sz f)(x) g O,(W(f Jit) 5 (f 1) o be fl) 4)
where
. zf“) (x) gives the output of feature-map of type-f for location 7 in Layer-/;

e o(-) is the activation function, e.g., Sigmoid or Relu (Dahl et al., 2013)

o (wr (f f) b(t of)) denotes the location-independent parameters for f € TIME-FLOW on Layer-/,
whlle (w.(l.f\f) b.(ri(f)} stands for that for f € TIME-ARROW and location i on Layer-£;

s igf_l) denotes the segment of Layer-f—1 for the convolution at location 7 , while
~(0) def T T T
[xx y El, W, B]

concatenates the vectors for &£y words from sentence input x.

y‘iiol.;‘] gatlng @ Layer-[-i-l

Layer-f

! Layer-f—1

Figure 3: Illustration for gating network.

.........................

] %gating @ Layer-f+1

)

Layer- f

Layer-f—1

Figure 3: Illustration for gating network.

Suppose we have convolution feature-maps on Layer-£ and gating (with window size = 2) on Layer-

{+1. For the j" gating window (2j—1, 2j), we merge 2.2‘;__11) and i.g._l) as the input (denoted as

_(¢ . y yix e

zg-)) for gating network, as illustrated in Figure 3. We use a separate gate for each feature-map, but
follow a different parametrization strategy for TIME-FLOW and TIME-ARROW. With window size =
2, the gating is binary, we use a logistic regressor to determine the weights of two candidates. For

€ TIME-ARROW, with location-dependent wbSd), the normalized weight for left side is
gate

(£.f.3)-(€)
g§f+1.f) . 1/(1 1+ e~ Waaie J Z;)!

while for For f€TIME-FLOW, the parameters for the corresponding gating network, denoted as Wégt{e) ;

are shared. The gated feature map is then a weighted sum to feature-maps from the two windows:

£+1, £+1, £, £+1, Z;
ZJ(‘ f)=g§ !)zéj-—,i_i"(l—g;‘]))z'.(!j!)' (5)

We find that this gating strategy works significantly better than direct pooling over feature-maps, and
also slightly better than a hard gate version of Equation (5).

train

The parameters of a genCNN © consists of the parameters for CNN ©,,,,, word-embedding
Ocmbed. and the parameters for soft-max O ,ftmar- All the parameters are jointly learned by

maximizing the likelihood of observed sentences. Formally the log-likelihood of sentence S,
(d_cif (n) (n) . e:(;z)]) i

Tn
log p(S,: ©) = Zlogp eMlel ;;0),

which can be trivially split into 75, training instances during the optimization, in contrast to the training
of RNN that requires unfolding through time due to the temporal-dependency of the hidden states.

Soft-max: Calculating a full soft-max is expensive since it has to enumerate all the words in vocab-
ulary (in our case 40K words) in the denominator. Here we take a simple hierarchical approximation
of it, following (Bahdanau et al., 2014). Basically we group the words into 200 clusters (indexed by
¢m), and factorize (in an approximate sense) the conditional probability of a word p(e;|e;.;—;: ©) into
the probability of its cluster and the probability of e; given its cluster

p(cmlelzt—l:. é)p(etlcm.: esoftma:l:)-

We found that this simple heuristic can speed-up the optimization by 5 times with only slight loss of
accuracy.

train

Optimization: We use stochastic gradient descent with mini-batch (size 500) for optimization, aided
further by AdaGrad (Duchi et al., 2011). For initialization, we use Word2Vec (Mikolov et al., 2013)
for the starting state of the word-embeddings (trained on the same dataset as the main task), and set all
the other parameters by randomly sampling from uniform distribution in [—0.1, 0.1]. The optimization
is done mainly on a Tesla K40 GPU. which takes about 2 days for the training on a dataset containing
IM sentences.

Experiment: sentence generation

M we are in the building of china ’s social development and the businessmen
audience , '’ he said

clinton was born in DDDD , and was educated at the university of edinburgh.

bush s first album , ‘' the man ’’ , was released on DD november DDDD .

it is one of the first section of the act in which one is covered in real

place that recorded in norway .

this objective is brought to us the welfare of our country

russian president putin delivered a speech to the sponsored by the 15th asia
pacific economic cooperation (apec) meeting in an historical arena on oct .

light and snow came in kuwait and became operational , but was rarely
placed in houston

johnson became a drama company in the DDDDs , a television broadcasting

company owned by the broadcasting program

((the two * sides) x should (x assume (a strong x target))) .)

(it x is time (* in (every x country) x signed (the % speech)) .)

((initial * investigations) * showed (* that (spot x could (x be (
further * improved significantly)) .)

((a x book (to x northern (the 21 st % century))) .)

Table 1: Examples of sentences generated by genCNN. In the upper block (row 1-4) the underline
words are given by the human; In the middle block (row 5-8), all the sentences are generated with-
out any hint. The bottom block (row 9-12) shows the sentences with dependency tag generated by
genCNN trained with parsed examples.

In this experiment, we randomly generate sentences by recurrently sampling

ef+1 ~ p(eis1ler: é),

Experiment: Language Modeling

Competitor Models we compare genCNN to the following competitor models

e S-gram: We use SRI Language Modeling Toolkit (Stolcke and others, 2002) to train a 5-gram
language model with modified Kneser-Ney smoothing;

e FFN-LM: The neural language model based on feedfoward network (Vaswani et al., 2013). We
vary the input window-size from 5 to 20, while the performance stops improving after window
size 20);

e RNN: we use the implementation' of RNN-based language model with hidden size 600 for opti-

mal performance of it;

e LSTM: we use the code in Groundhog?, but vary the hyper-parameters, including the depth and
word-embedding dimension, for best performance. LSTM (Hochreiter and Schmidhuber, 1997)
is widely considered to be the state-of-the-art for sequence modeling.

Model Perplexity | Dynamic
5-gram, KN5 141.2 -
FFNN-LM 140.2 -
RNN 124.7 123:2
LSTM 126 117
genCNN 116.4 106.3

Table 2: PENN TREEBANK results, where the 3rd column are the perplexity in dynamic evaluation,
while the numbers for RNN and LSTM are taken as reported in the paper cited above. The numbers
in boldface indicate that the result is significantly better than all competitors in the same setting.

* Experiment: Language Modeling

Model Perplexity
5-gram, KN5 278.6
FFN-LM(5-gram) 248.3
FFN-LM(20-gram) 228.2
RNN 223.4
LSTM 206.9
genCNN 181.2
TIME-ARROW only 192
TIME-FLOW only 203
aCNN only 184.4

Table 3: FBIS results. The upper block (row 1-6) compares genCNN and the competitor models,
and the bottom block (row 7-9) compares different variants of genCNN.

* Experiment: Language Modeling

Models MTO06 | MTO8 | Ave.
Baseline 38.63 | 31.11 | 34.87
RNN rerank 39.03 | 31.50 | 35.26

LSTM rerank 39.20 | 31.90 | 35.55
FFN-LM rerank | 3893 | 31.41 | 35.14
genCNN rerank | 3990 | 32.50 | 36.20

Base+FFN-LM | 39.08 | 31.60 | 35.34
genCNN rerank | 40.4 | 32.85 | 36.63

Table 4: The results for re-ranking the 1000-best of Moses. Note that the two bottom rows are on a
baseline with enhanced LM.

