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Deep Voice 2: Multi-Speaker Neural
Text-to-Speech
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Speaker model:
1. VCTK, 44 hours of speech, 108 speakers
2. Baidu Internal, 477 spekers, 30 minutes for each



Model Samp. Freq. MOS
Deep Voice 1 16 KHz 2.05+£0.24
Deep Voice 2 16 KHz 2.96 + 0.38
Tacotron (Griffin-Lim) 24 KHz 2.57 +0.28
Tacotron (WaveNet) 24 KHz 417 £ 0.18

Table 1: Mean Opinion Score (MOS) evaluations with 95% confidence intervals of Deep Voice 1,
Deep Voice 2, and Tacotron. Using the crowdMOS toolkit, batches of samples from these models
were presented to raters on Mechanical Turk. Since batches contained samples from all models, the
experiment naturally induces a comparison between the models.

| Dataset || Multi-Speaker Model | Samp. Freq. | MOS | Acc. |
VCTK Deep Voice 2 (20-layer WaveNet) 16 KHz 2.87£0.13 | 99.9%
VCTK Deep Voice 2 (40-layer WaveNet) 16 KHz 3.21x0.13 | 100 %
VCTK Deep Voice 2 (60-layer WaveNet) 16 KHz 3.42+0.12 | 99.7%
VCTK Deep Voice 2 (80-layer WaveNet) 16 KHz 3.53+0.12 | 99.9%
VCTK Tacotron (Griffin-Lim) 24 KHz 1.684+0.12 | 99.4%
VCTK Tacotron (20-layer WaveNet) 24 KHz 2.51£0.13 | 60.9%
VCTK Ground Truth Data 48 KHz 4.65+0.06 | 99.7%
Audiobooks || Deep Voice 2 (80-layer WaveNet) 16 KHz 2.97+0.17 | 97.4%
Audiobooks Tacotron (Griffin-Lim) 24 KHz 1.73+£0.22 | 93.9%
Audiobooks Tacotron (20-layer WaveNet) 24 KHz 2.11+0.20 | 66.5%
Audiobooks Ground Truth Data 44.1 KHz 4.63+0.04 | 98.8%

Table 2: MOS and classification accuracy for all multi-speaker models. To obtain MOS, we use
crowdMOS toolkit as detailed in Table 1. We also present classification accuracies of the speaker
discriminative models (see Appendix E for details) on the samples, showing that the synthesized
voices are as distinguishable as ground truth audio.



Transfer Learning from Speaker Verification to
Multispeaker Text-To-Speech Synthesis
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Figure 1: Model overview. Each of the three components are trained independently.

* D-vector speaker encoding

* Tacotron?2

 VCTK and LibriSpeech



Table 1: Speech naturalness Mean Opinion Score (MOS) with 95% confidence intervals.

System VCTK Seen VCTK Unseen  LibriSpeech Seen  LibriSpeech Unseen
Ground truth 4.43 +0.05 4.49 + 0.05 4.49 + 0.05 4.42 +0.07
Embedding table 4.12 + 0.06 N/A 3.90 £ 0.06 N/A

Proposed model  4.07 £ 0.06 4.20 + 0.06 3.89 £ 0.06 4.12 4+ 0.05




Speaker reference utterance Synthesized mel spectrogram
"and all his brothers and sisters stood round and listened

with their mouths open" "this is a big red apple"
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Figure 2: Example synthesis of a sentence in different voices using the proposed system. Mel

spectrograms are visualized for reference utterances used to generate speaker embeddings (left), and

the corresponding synthesizer outputs (right). The text-to-spectrogram alignment is shown in red.

Three speakers held out of the train sets are used: one male (top) and two female (center and bottom).



Table 4: Speaker verification EERs of different synthesizers on unseen speakers.

Synthesizer Training Set  Training Speakers SV-EER on VCTK  SV-EER on LibriSpeech
Ground truth - 0.93%
VCTK 98 29.19%
LibriSpeech 1.2K 5.08%
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Figure 3: Visualization of speaker embeddings extracted from LibriSpeech utterances. Each color
corresponds to a different speaker. Real and synthetic utterances appear nearby when they are from

the same speaker, however real and synthetic utterances consistently form distinct clusters.




Table 6: Speech from fictitious speakers compared to their nearest neighbors in the train sets.
Synthesizer was trained on LS Clean. Speaker Encoder was trained on LS-Other + VC + VC2.

Nearest neighbors in Cosine similarity SV-EER  Naturalness MOS

Synthesizer train set 0.222 56.77%
Speaker Encoder train set 0.245 38.54%

3.65 £ 0.06




Analyzing Hidden Representations in End-to-End Automatic
Speech Recognition Systems
Yonatan Belinkov and James Glass, MIT

 CTC-based ASR system, Deep speech 2 architecture
* Trained on libriSpeech

* Train additional “prober” for each layer, for quick
phone recognition on TIMIT.

(a) DeepSpeech2. (b) DeepSpeech2-light.

Layer Type InputSize Output Size Layer Type InputSize Output Size
1 cnnl 161 1952 1 cnnl 161 1952
2 cnn2 1952 1312 2 cnn2 1952 1312
3 rnnl 1312 1760 3 Istm1 1312 600
4 rnn2 1760 1760 -+ Istm?2 600 600
5 rnn3 1760 1760 d Istm3 600 600
6 rnn4 1760 1760 6 Istm4 600 600
7 rnnS 1760 1760 7 Istm5 600 600
8 mn6 1760 1760 8 fc 600 29
9 rnn7 1760 1760

10 fc 1760 29
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Figure 1: Frame classification accuracy using representations from different layers of DeepSpeech2
(DS2) and DeepSpeech2-light (DS2-light), with or without strides in the convolutional layers.
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Frame Classification Accuracy per Representation Layer
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Figure 4: Accuracy of classification into
sound classes using representations from dif-
ferent layers of DeepSpeech2.
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Figure 6: Confusion matrices of sound class classification using representations from different layers.



Houdini: Fooling Deep Structured Visual and Speech
Recognition Models with Adversarial Examples
Moustapha Cisse et al. Facebook

original semantic segmentation framework adversarial attack

compromised semantic segmentation framework

Figure 1: We cause the network to generate a minion as segmentation for the adversarially perturbed
version of the original image. Note that the original and the perturbed image are indistinguishable.

~~

T = argmax £(go(Z),y)

i=|lfi—wllpée

Traditionally an adverse sample is produced for individuals, by searching the most loss direction in the neighbor of
a sample

Design for impact performance of tasks



* Using a surrogate in the probability sense
e Attach deepspeech 2

0 (0,2,9) = Prno,n) [90(2,9) — 90(2,9) < 7| - £(5,y)
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Figure 3: Examples of successful targetted attacks on a pose estimation system. Despite the important
difference between the images selected, it is possible to make the network predict the wrong pose by
adding an imperceptible perturbation. The images are part of the MPI dataset.



source noise.

source image initial prediction noise

Figure 4: Targetted attack on a semantic segmentation system: switching target segmentation between
two images from Cityscapes dataset [8]. The last two columns are respectively zoomed-in parts of
the perturbed image and the adversarial perturbation added to the original one.



| e=0.3 e=10.2 e=0.1 e =0.05
| WER CER | WER CER | WER CER | WER CER

68 9.3 51 6.9 29.8 4 20 2.5
96.1 12 85.4 92 66.5 6.5 46.5 4.5

CIC
Houdini

Figure 5: CER and WER in (%) for adversarial examples generated by both CTC and Houdini.

Frequency (H2)

(a) a great saint saint francis zaviour (b) 1 great sinkt shink t frimsuss avir

Figure 6: The model’s output for each of the spectrograms is located at the bottom of each spectrogram.
The target transcription is: A Great Saint Saint Francis Xavier.



Groundtruth Transcription:
The fact that a man can recite a poem does not show he remembers
any previous occasion on which he has recited it or read it.

G-Voice transcription of the original example:

The fact that a man can decide a poem does not show he
remembers any previous occasion on which he has work cited or read it.

G-Voice transcription of the adversarial example:
The fact that I can rest I’m just not sure that you heard there is any
previous occasion I am at he has your side it or read it.

Groundtruth Transcription:
Her bearing was graceful and animated she led her son by the hand and
before her walked two maids with wax lights and silver candlesticks.

G-Voice transcription of the original example:
The bearing was graceful an animated she let her son by the hand and
before he walks two maids with wax lights and silver candlesticks.

G-Voice transcription of the adversarial example:

Mary was grateful then admitted she let her son before the walks
to Mays would like slice furnace filter count six.

Figure 8: Transcriptions from Google Voice application for original and adversarial speech segments.

What the eyes see and the ears hear, the mind believes. (Harry Houdini)
How about voice watermarking?



Fully Neural Network Based Speech Recognition on
Mobile and Embedded Devices
Jinhwan Park et al. Seoul National Univeristy

e Full neural model: CTC linear RNN AM,
character RNN LM, beam search
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Figure 1: (a) The architecture of the neural network model used for acoustic modeling. (b) The
system consists of RNN AM, RNN LM, and beam search decoding.



* Reduce DRAM access by parallel RNN

SRU:

X = W.x; + b,

f, = O’(fot —+ bf)j

o; = a(Wyx; + by,),

¢t =f Oci1+ (1 — 1) ©%y,

h; = o: ® tanh (ct) + (1 —0¢) ©® x¢

(1)

1-SRU:

%X; = tanh (W,x; + b,),

f, = c(Wx; + by),

i, = o(W;x; + b;),

o; = o(Wyx; + b,),

ct=f Oci—1 +1; O Xy

h; =0; ®ci+ (1 —0) ©xy

(2)



Table 1: WER and CER in percentage on WSJ eval92 test set. Decoding is conducted with RNN
CLM and HCLM.

| Greedy | CLM | HCLM

Model Params. | CER WER | CER WER | CER WER
6x800 SRU 10.62M 2694 8256 1324 2968 794 1541
6x700 i-SRU 10.92M 12.70 4522 7.04 1890 490 12.27
6x800 SRU, 1-D conv 10.6OM  6.06 22.16 3.48 9.53 1.97 4.90
6x700 i-SRU, 1-D conv 10.98M  5.26 19.07 2.70 7.30 201 490
6x1000 i-SRU, proj, 1-D conv ~ 14.14M  5.85 21.60 3.00 7.80 227 $5.17
4x600 LSTM 10.85M  7.29 24.88 5.35 1427 370 8.75
4x600 LSTM, 1-D conv 10.88M  6.95 23.57 5.80 15.22 310 17.01
4x840 LSTM, proj, 1-D conv 12.01IM  7.78 26.80 4.88 1226 336 7.60
6x300 Gated ConvNet 16.38M  8.02 28.65 5.13 13.82 298 6.74
4x550 GILR-LSTM 11.34M  8.60 31.99 4.86 13.60 2.66 6.35
4x550 GILR-LSTM, 1-Dconv 11.37M  7.15 26.06 4.44 1192 238 545
bidirectional models
6x400 i-SRU, 1-D conv 11.52M  4.90 1730 294 7.90 1.97 4.87
4x350 LSTM 10.70M  5.88 20.17 346 041 2.57 5.89




Table 2: Comparision of the model with non-causal and causal 1-D convolutions. 1-D conv (-a, b)
uses a past and b future time-steps to compute the output of the current time step.

| Greedy | CLM | HCLM
Model ‘ CER WER ‘ CER WER | CER WER

6x7001-SRU, 1-D conv (-7,7) 5.26 19.07 270 7.30 201 490
6x7001-SRU, 1-D conv (-14,0) 5.70  20.18 3.12 847 230 3.32
6x7001-SRU, 1-Dconv (-7,0) 6.10 2196 299 7.69 238 555
6x7001-SRU, 1-Dconv (-7,1) 6.02 2140 3.09 8.04 239 357
6x7001-SRU, 1-Dconv (-7,2) 632 2280 3.08 7.80 226 528

Table 3: WER and CER in percentage on WSJ eval92 test set when trained with additional data.

| Greedy | CLM | HCLM
Model Params. ‘ CER WER | CER WER | CER WER
6x700 i-SRU, 1-D conv 10.98M  4.13 18.02 254 6.04 151 3.73
6x1000 i-SRU, proj, 1-D conv  14.14M  3.80 1470 219 620 148 3.70
4x600 LSTM, 1-D conv 10.88M  4.35 13.90 3.72 10.15 255 592

4x840 LSTM, proj, I-Dconv  12.0IM 576 20.15 3.54 9.25 253 5.9
Deep Speech 2 100M WER 3.60 with 5-gram LM




Table 4: WER and CER on WSIJ eval92 when word piece units are used.

| Greedy | WPLM
Model | CER  WER l CER WER
6x700 i-SRU, 1-D conv 1.37 1795 6.73 10.50
4x600 LSTM, 1-D conv 9.34 2256 847 15.64

6x700 1-SRU, 1-D conv, additional data  5.47 1438 3.11 8.28
4x600 LSTM, 1-D conv, additional data 6.57 1532 4.53 11.48

Table 5: Comparison of WER and CER on WSJ eval 92 according to downsampling in the word
piece AMs.

| Greedy | WPLM
Model | CER  WER | CER WER
X2 in conv. layer 7.02 1895 6.05 10.93
x4 in conv. layer 805 2024 655 11.83

x2 in conv. layer, x2 in recurrent layer  7.37 1795 6.00 10.50
x4 in conv. layer, x2 in recurrent layer 10.30 25.58  7.83 13.99




Table 6: WER and CER on Librispeech test-clean . The models are trained on LibriSpeech train-
clean-100 and train-clean-360.

| Greedy | RNNLM
Model Params. | CER WER | CER WER
4x600 LSTM, character 10.85M 8.49 26.10 7.34  21.80
6x700 i-SRU, 1-D conv, character 10.98M  6.21 20.41 5.66 13.78

6x700 i-SRU, 1-D conv, word piece-500 11.30M 6.72 17.10 4.67 9.98
6x700 i-SRU, 1-D conv, word piece-1000 11.65M  6.62 16.16 442  9.61

Table 7: WER on Librispeech test-clean and test-other. The models are trained on all the LibriSpeech
train set (960 hours).

Model Params. | test-clean test-other | LM type
6x700 i-SRU, 1-D conv 12M 9.02 23.60 RNN LM
12x1000 i-SRU, 1-D conv 36M 5.73 15.96 RNN LM
Gated ConvNet [21] 208M 4.8 14.5 4-gram LM
5-conv + 4x1024 bidirectional GRU [31] 75M 54 14.7 4-gram LM

Encoder-decoder [32] 150M 3.82 12.76 RNN LM




Table 8: Execution time of SRU-AM for 1 second of speech according to the number of parallelization
steps.

Parallelization Step 1 2 4 8 16 32
Computation time 1.2129 0.6098 0.3065 0.2064 0.1524 0.1174

0 AMm
1 Decoding 2.33
0 LM =
2 [] etc 2
2 1.47 o Beam 32 64 128
3 i] 91 g =l character 6.24 6.15 6.04
% 0.47 0. 71 word piece 8.28 8.28 8.26
7 '3 character (8-bit) 6.47 6.33 6.30
0 H 0 word piece (8-bit) 8.97 8.97 8.96
128 32 128
Beam width Beam width
(a) Character-level model. (b) Word piece-level model. (c) WER with different beam width.

Figure 2: (a, b): Processing time of the speech recognition system for 1 second of speech on the
single core ARM CPU. The time is evaluated on the WSJ eval92 dataset. The plot with dashed lines
represents the computation time with 8-bit weights. (¢): WERs when different beam width is used.



Unsupervised Cross-Modal Alighnment of Speech and
Text Embedding Spaces
Yu-An Chung et al. MIT

* Unpaired speech and text data, training
something to make text words and spoken

words aligned
e Skip-gram & Adversarial training

* Low resource ASR



* Speech2vec: segmentation, skip-gram, k-mean

— This vector may contain both acoustic and
semantic

* Align word vec and speech vec, however how
to do that without supervision?

W* = argmin |[WX —Y|?
W eRd2 Xdy



* Adversarial training

1 « 1
Lp(@p|W) = - ZlongD(speech =1|Ws;) — - ZlongD(speech = 0lt,),

1=1 71=1

1 1
Lw(W|0p) = - g log Py,, (speech = 0|W's;) — - E log Py, (speech = 1|t;)
i=1 j=1



Table 2: Different configurations for training Speech2Vec to obtain the speech embeddings with
decreasing level of supervision. The last column specifies whether the configuration is unsupervised.

C . Speech2Vec training ,
onfiguration Unsupervised
How word segments were obtained How embeddings were grouped together
A& A” Forced alignment Use word identity X

B Forced alignment k-means X
C BES-GMM [35] k-means v
D ES-KMeans [36] k-means v
E SylSeg [37] k-means v
F Equally sized chunks k-means v

Table 3: Accuracy on spoken word classification. ENjg; — engy. means that the speech and text
embeddings were learned from the speech training data of English LibriSpeech and text training data
of English SWC, respectively, and the testing audio segments came from English LibriSpeech. The
same rule applies to Table 5 and Table 6. For the Word Classifier, EN}s — engy. and ENgy. — enjg
could not be obtained since it requires parallel audio-text data for training.

Corpora | ENjs —enjs | FRis — fris | ENgwe — eDgwe | DEgwe — deswe | ENis — engwe | ENgwe — emg
Nonalignment-based approach
Word Classifier || 89.3 \ 83.6 | 86.9 | 80.4 \ - | -

Alignment-based approach with cross-modal supervision (parallel dictionary)

A* I 254 | 27.1 | 29.1 | 26.9 | 21.8 | 239
Alignment-based approaches without cross-modal supervision (our approach)

A 23.7 249 25.3 25.8 18.3 21.6

B 19.4 20.7 22,6 21.5 159 17.4

c 10.9 12.6 14.4 13.1 6.9 8.0

D 11.5 12.3 14.2 12.4 7.5 8.3

E 6.5 7.2 8.9 7.4 4.5 59

r

0.8 1.4 2.8 1.2 0.2 0.5




Table 4: Retrieved results of example audio segments that are considered incorrect in word classifica-
tion. The match for each audio segment is marked in bold.

Input audio segments

Rank
beautiful  clever destroy suitcase
1 lovely cunning  destroyed bags
2 pretty smart destroy  suitcases
3 gorgeous  clever  annihilate  luggage
4 beautiful  crafty destroying briefcase
5 nice wisely destruct suitcase

Can be applied in spoken term retrieval?



Table 6: Results on spoken word translation. We measure how many times one of the correct
translations of the input audio segment is retrieved, and report precision@£k for k = 1, 5.

Corpora H Ele - frls FRIS — €Njg ENswc - deswc DEswc — Clgwc ENIS - Cleswc FRIS 0 deswc
Average P@k || P@1 P@5 | P@1 P@5 | P@l P@5 |P@1 P@5 |P@I P@5 |P@l P@5

Alignment-based approach with cross-modal supervision (parallel dictionary)
A* | 479 56.4 | 49.1 60.1 | 40.2 519 | 433 558 | 349 463 | 338 449

Alignment-based approaches without cross-modal supervision (our approach)

405 503 | 399 509 | 32.8 43.8 33.1 43.4 319 422 | 30.1 42.1
360 449 | 355 445 | 279 38.3 30.9 40.9 266 353 | 254 382
2477 354 | 239 373 | 220 30.3 20.5 29.1 19.2  26:1 148 23.1
254 33.1 | 244 346 | 235 29.1 20.7 313 208 259 | 145 224
154 20.6 | 16.7 199 | 14.1 15.9 16.6 17.0 148 16.7 9.7 11.8
4.3 5.6 6.9 135 4.9 6.5 35 6.6 4.2 5.9 1.8 2.6

HEHOQT

Majority Word Baseline
Major-Word || 1.1 15 | 1.6 22 | L2 15 | 20 27 | 11 1.5 | 1.6 2.2




