An Overview about Lip Reading & Audio-visual Speech Recognition

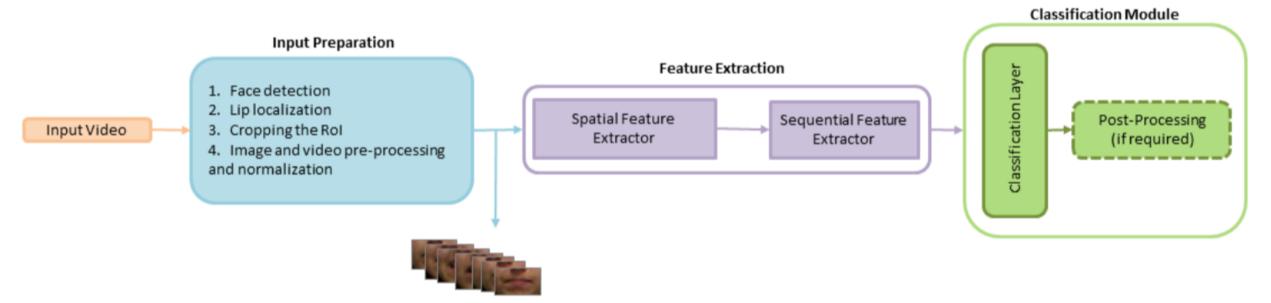
Chen Chen 2022/03/18

Catalog

- Introduction
- Pipeline
- Datasets & Performance Evaluation
- Methods

Definition

- Lip Reading
 - recognize what is being said from visual information alone
- Audio-visual Speech Recognition
 - recognize what is being said from both audio and visual information

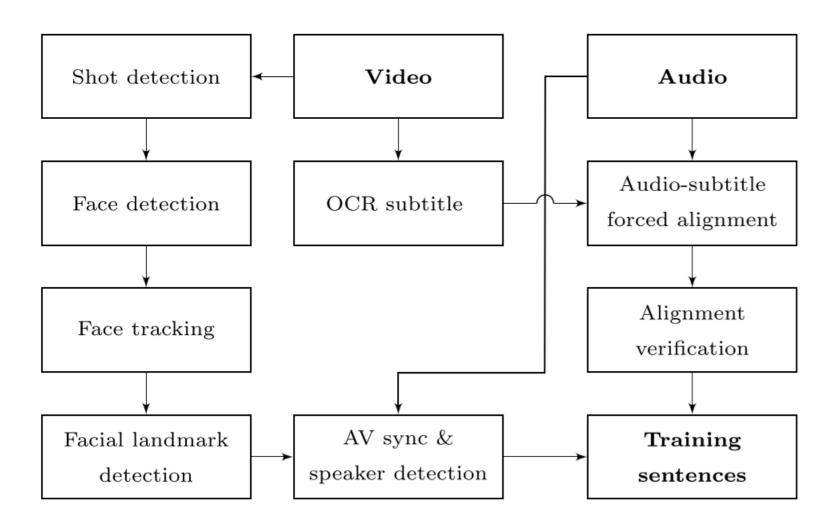

Viseme

Challenges

- Subject dependent factors
 - speaker variation
- Video quality factors
 - pose variation
 - unsynchronized audio & video
- Content-based factors
 - homophones (same viseme but different phoneme)
- Single modality dominate

• ...

Pipeline of Lip Reading



Sample Rols (images from MIRACL-VC)

Datasets

Dataset	Source	Split	Dates	# Spk.	# Utt.	Word inst.	Vocab	# hours
GRID [16]	-	-	-	51	33,000	165k	51	27.5
MODALITY [17]	-	-	-	35	5,880	8,085	182	31
LRW [12]	ВВС	Train-val Test	01/2010 - 12/2015 01/2016 - 09/2016	-	514k 25k	514k 25k	500 500	165 8
LRS [11] [†]	ВВС	Train-val Test	01/2010 - 02/2016 03/2016 - 09/2016	-	106k 12k	705k 77k	17k 6,882	68 7.5
† MV-LRS [14]	BBC	Pre-train Train-val Test	01/2010 - 12/2015 01/2010 - 12/2015 01/2016 - 09/2016	- - -	430k 70k 4,305	5M 470k 30k	30k 15k 4,311	730 44.4 2.8
LRS2-BBC	BBC	Pre-train Train-val Test Text-only	01/2010 - 02/2016 01/2010 - 02/2016 03/2016 - 09/2016 01/2016 - 02/2016	- - -	96k 47k 1,243 8M	2M 337k 6,663 26M	41k 18k 1,693 60k	195 29 0.5
LRS3-TED	TED & TEDx (YouTube)	Pre-train Train-val Test Text-only	- - - -	5,543 4,004 451 5,543	132k 32k 1,452 1.2M	4.2M 358k 11k 7.2M	52k 17k 2,136 57k	444 30 1

LRS dataset pipeline

BLEU: a Method for Automatic Evaluation of Machine Translation http://www.aclweb.org/anthology/P02-1040.pdf

Evaluation Metrics

- Error Rate
 - PER (phoneme error rate)
 - CER (character error rate)
 - WER (word error rate)
- BLEU (BiLingual Evaluation Understudy)
 - a Method for Automatic Evaluation of Machine Translation

$$\mathrm{BP} = \left\{ egin{array}{ll} 1 & \mathrm{if} \ c > r \ e^{(1-r/c)} & \mathrm{if} \ c \leq r \end{array}
ight. .$$

Then,

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
.

c is the length of the candidate translation r is the effective reference corpus length

 $ER = \frac{S + D + I}{N}$

$$p_{n} = \frac{\sum\limits_{C \in \{Candidates\}} \sum\limits_{n-gram \in C} Count_{clip}(n-gram)}{\sum\limits_{C' \in \{Candidates\}} \sum\limits_{n-gram' \in C'} Count(n-gram')}.$$

Methods

Method	Year	WER on LRS3	Create Dataset	Train on
LipNet	2016			GRID
WAS	2017		LRS	LRS
TM-seq2seq	2018	58.9	LRS2-BBC, LRS3-TED	MV-LRS, LRS2, LRS3
CTC-V2P	2018	55.1	LSVSR	LSVSR
RNN-T	2019	33.6	YT	YT
VTP	2021	30.7	TEDx_ext	LRS2, LRS3, MV-LRS, TEDX_ext
AVHuBERT	2022	26.9		VoxCeleb2, LRS3

LipNet

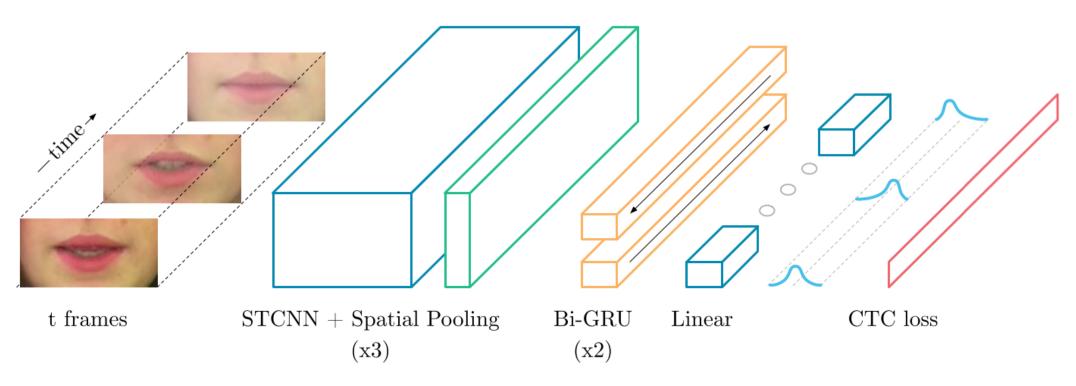


Figure 1: LipNet architecture. A sequence of T frames is used as input, and is processed by 3 layers of STCNN, each followed by a spatial max-pooling layer. The features extracted are processed by 2 Bi-GRUs; each time-step of the GRU output is processed by a linear layer and a softmax. This end-to-end model is trained with CTC.

WLAS

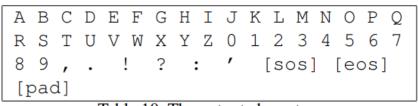


Table 10. The output characters

 $f_i^v = \text{CNN}(x_i^v)$

 $s^{a} = h_{1}^{a}$

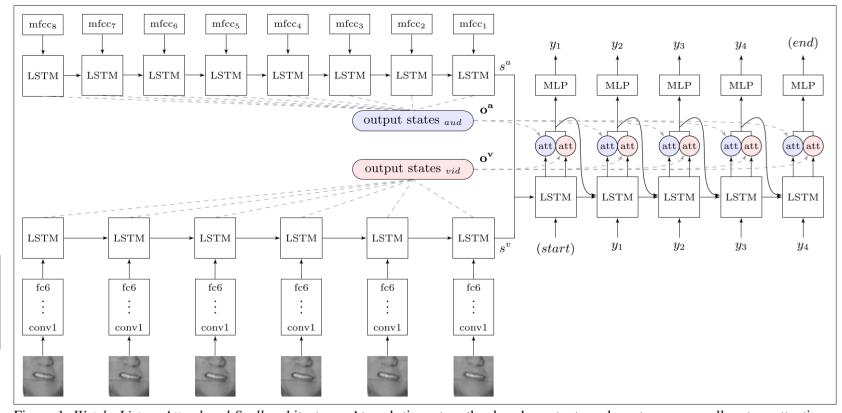


Figure 1. Watch, Listen, Attend and Spell architecture. At each time step, the decoder outputs a character y_i , as well as two attention vectors. The attention vectors are used to select the appropriate period of the input visual and audio sequences.

$$h_i^v, o_i^v = \texttt{LSTM}(f_i^v, h_{i+1}^v)$$

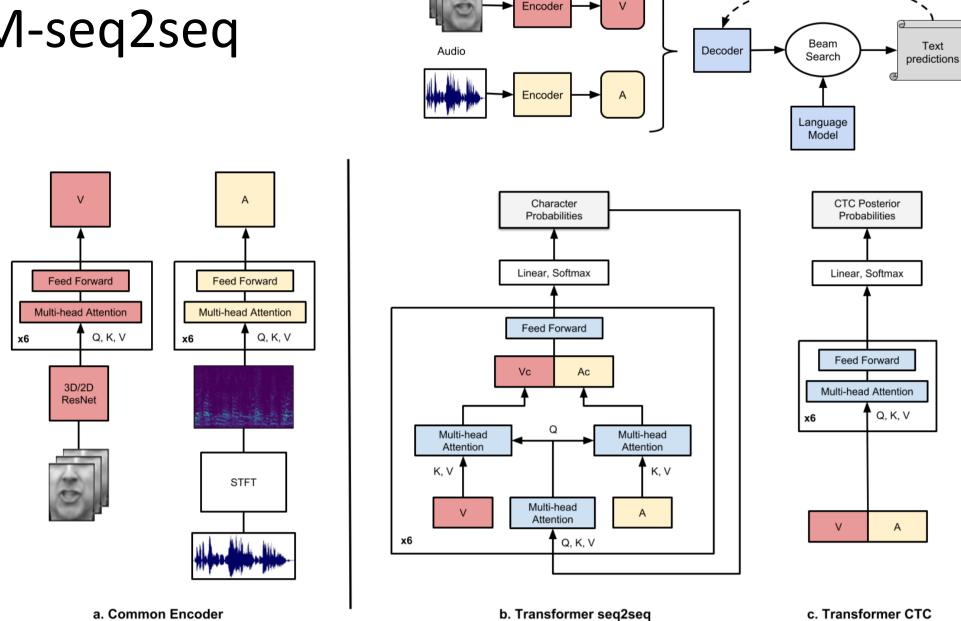
$$s^v = h_1^v$$

$$h_j^a, o_j^a = \texttt{LSTM}(x_j^a, h_{j+1}^a)$$

(5)

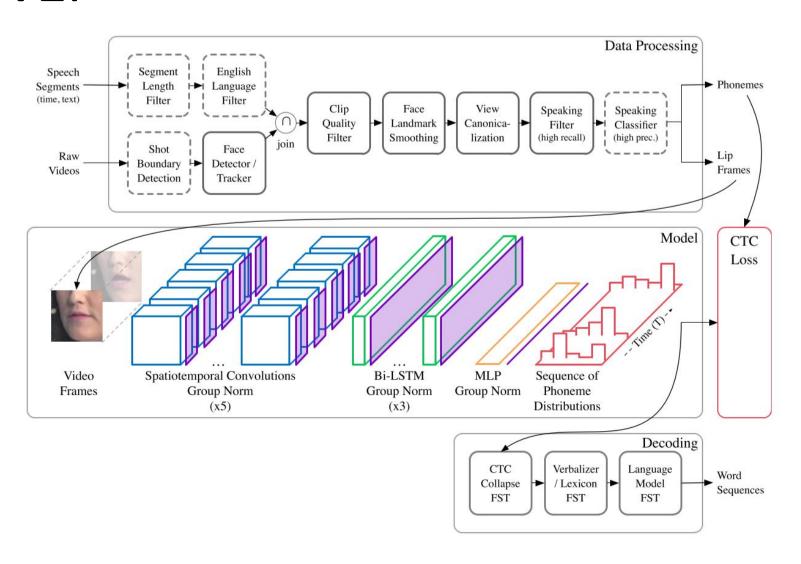
(6)

(7)

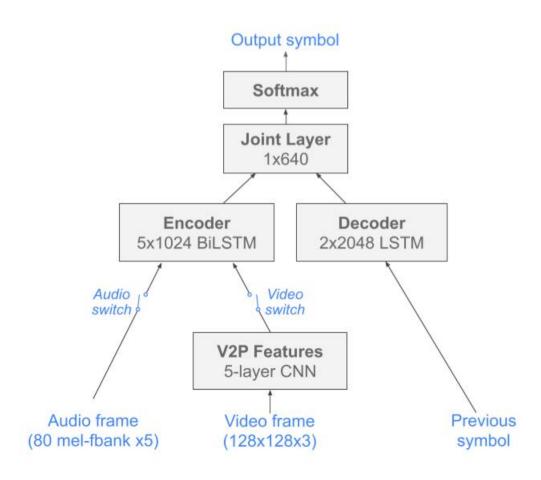

(8)
$$P(y_i|\mathbf{x}^v, \mathbf{x}^a, y_{< i}) = \operatorname{softmax}(\operatorname{MLP}(o_k^d, c_k^v, c_k^a))$$
(13)

$$h_k^d, o_k^d = \text{LSTM}(h_{k-1}^d, y_{k-1}, c_{k-1}^v, c_{k-1}^a)$$
 (10)

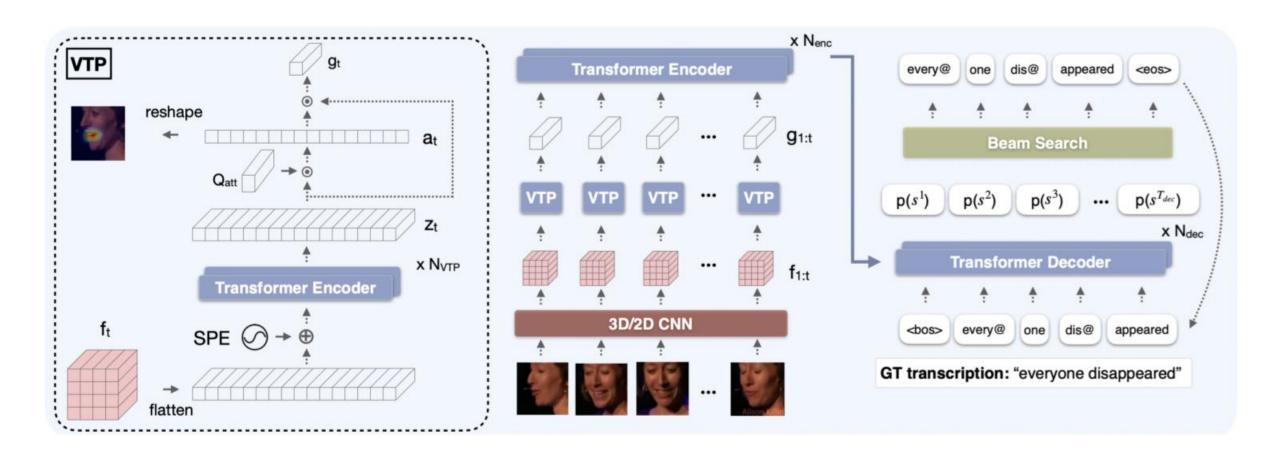
$$c_k^v = \mathbf{o}^v \cdot \mathsf{Attention}^\mathsf{v}(h_k^d, \mathbf{o}^v) \tag{11}$$

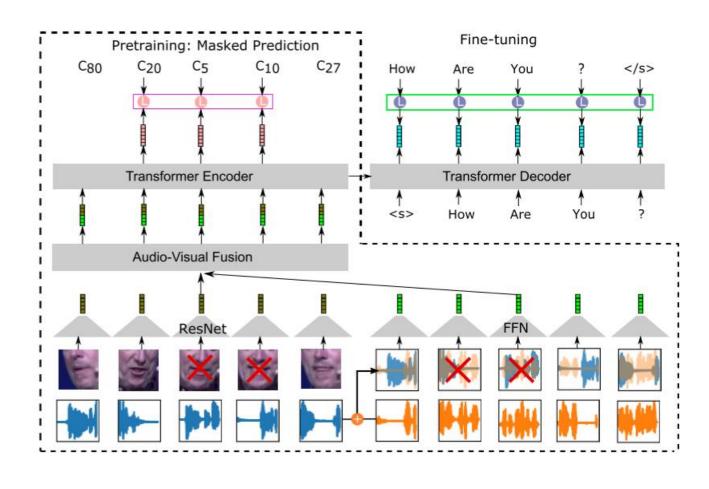

$$c_k^a = \mathbf{o}^a \cdot \text{Attention}^{\mathbf{a}}(h_k^d, \mathbf{o}^a)$$
 (12)

TM-seq2seq



Video


CTC-V2P


RNN-T

VTP

AV-HuBERT

Conclusion

- It is critical to develop a better way to capture both spatial and temporal information
- It is (used to be) important to build a dataset
 - a pipeline for pre-process is needed
 - language variation, vocabulary variation, ...
 - different video quality
 - bigger dataset
- Training protocol is important
 - curriculum learning
 - pre-training
 - avoid single modality dominates
 - •

Reference

Method	Year	Paper Title	PDF
LipNet	2016	LIPNET: END-TO-END SENTENCE-LEVEL LIPREADING	https://arxiv.org/abs/1611.05358v2
WAS	2017	Lip Reading Sentences in the Wild	https://arxiv.org/abs/1611.05358v2
TM-seq2seq	2018	Deep Audio-visual Speech Recognition	https://arxiv.org/abs/1809.02108
CTC-V2P	2018	LARGE-SCALE VISUAL SPEECH RECOGNITION	https://arxiv.org/abs/1807.05162
RNN-T	2019	RECURRENT NEURAL NETWORK TRANSDUCER FOR AUDIO-VISUAL SPEECH RECOGNITION	https://arxiv.org/abs/1911.04890
VTP	2021	Sub-word Level Lip Reading With Visual Attention	https://arxiv.org/abs/2110.07603v2
AVHuBERT	2022	Robust Self-Supervised Audio-Visual Speech Recognition	https://arxiv.org/abs/2201.01763