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Revisit BP

* BP propagate loss
information back-
ward.
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Revisit BP

* BP relies on the chain rule of derivation
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Revisit BP

* All the paths traversing through the target parameters should be
involved
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Consider a simple task

* Goal: optimize an
intractable integration
samples, with respect to
the distribution.
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REINFORCE

* Reformulate the gradient

as an integration in terms

of pe(x), so that the sample

can be used to estimate

the graident. P ~ X
* Lose part of gradient R K L3 s
represented by the

samples themselves.
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Parameteric trick

* Represent pg(x) as k.(€)
where € Is a standard
distribution.

* All randomness is W ¢ A LT 22 X 1
represented by €, and
learning ¢ will learn pg(x) .
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Reparameteric trick in VAE

* VAE: an encoder g,(x) and a
decoder f(z), trained
simultaneously

* By sampling of z, gradient is
blocked when backpropagated
to the encoder

encode > decode >
Inference Generative

Latent
Distribution



Reparameteric trick in VAE

encode > decode >
Inference Generative

» Using reparaemtric trick, let € is

a Gaussian, z=k () = y + 0 &; fuae ) e
6={u,0)

* Due to this trick, graident can
BP to y and o, which further BP CowCle) AN el

to the encoder. | d

Latent
Distribution

C(u,0) = 1/NY L(f(u+08,),x) + KL(N(0,1),N(u,0))



Reparametric for Bayes neural net

Sample e ~ N (0, I).
Letw = p + log(1 + exp(p)) c €.
Let @ = [j4, o).

* Using reparametric to represent model
Let f(w,0) = logg(w|@) — log P(w)P(D|w).
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Figure 1. Left: each weight has a fixed value, as provided by clas- 7. Update the variational parameters:
sical backpropagation. Right: each weight is assigned a distribu- 5
tion, as provided by Bayes by Backprop. S )
P p— g (6)

Blundell et al., Weight Uncertainty in Neural Networks, ICML 2015



Appliation to speaker recognition

Table 2: In-domain evaluation: equal error rate (EER) and minimum detection cost function (min-DCF) in different conditions.

Training set | Evaluation set | System | Scoring back-end | x-vector extractor | EER(%) | DCFyvox/DCFsrg1o
(1) baseline 9.58 0.6899
(2) cosine proposed 9.30 0.6508
3) fusion 8.64 0.6423
Voxcelebl Voxcelebl @ haeling 56] 06073
(5) PLDA proposed 6.52 0.5423
(6) fusion 6.35 0.5487
(7) baseline 5.61 0.6830
(8) cosine proposed 5:52 0.6555
9) fusion 547 0.6502
RIDEDREN | RISTSREN (10) baseline 3.29 0.3926
(11) PLDA proposed 3.19 0.3835
(12) fusion 3.17 0.3840

Li et al., Bayesian x-vector: Bayesian Neural Network based x-vector System for Speaker Verification



Reparametric for categorical values by
Gumbel distribution
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The Gumbel(0,1)distribution can be sampled using
inverse transform sampling by drawing
u~ Uniform(0,1)and computing g=-log(-log(u))



Gumbel-Max trick

z = one_hot | arg max [g@- + log Wé]

* Gumbel-Max trick: draw k (k is the class number) g following Gumbel
(0,1), z will be a unbiased sample following categorical distribution
with parameter 11

Jang E, Gu S, Poole B. Categorical reparameterization with gumbel-softmax[J]. arXiv
preprint arXiv:1611.01144, 2016.



Smooth the transform function:Gumbel-
softmax

Categorical 7 = 0.1 7 = 0.5 7 = 1.0 7 = 10.0
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More on sampling

 Gumbel-softmax sample continuous vectors y

e Using argmax (y) =z as the sample, and treat the gradient on y is equal
to the gradient on z, called STRAIGHT-THROUGH estimation.

Jang E, Gu S, Poole B. Categorical reparameterization with gumbel-softmax[J]. arXiv
preprint arXiv:1611.01144, 2016.



Understand Gumbel-softmax

(3)

O Deterministic,
differentiable node
O Stochastic node

T Forward pass

dlog Py(Y)
a0

i Backpropagation

Figure 2: Gradient estimation in stochastic computation graphs. (1) Vy f(2) can be computed via
backpropagation if x(€#) is deterministic and differentiable. (2) The presence of stochastic node
z precludes backpropagation as the sampler function does not have a well-defined gradient. (3)
The score function estimator and its variants (NVIL, DARN, MuProp, VIMCO) obtain an unbiased
estimate of Vy f(z) by backpropagating along a surrogate loss f log pg(z), where f = f(z) — b and
b is a baseline for variance reduction. (4) The Straight-Through estimator, developed primarily for
Bernoulli variables, approximates Vyz =~ 1. (5) Gumbel-Softmax is a path derivative estimator for
a continuous distribution y that approximates z. Reparameterization allows gradients to flow from
f(y) to 0. y can be annealed to one-hot categorical variables over the course of training.



Wrap up

 Sampling is a powerful approach to deal with complex integration,
however it will block the gradient path

* Reparametric trick reformulates the distribution as a transform of a
basic distribution, so that the distribution itself can be learned.

e Gaussian trick is often used in continuous cases, and Gumbel-softmax
can be used in categorical cases.



