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Abstract—Regularisation of deep neural networks (DNN) preventing, to some degree, high-frequency (i.ene for
during training is critical to performance. By far the most abrupt) SGD steps from occuring.
popular method is known asdropout. Here, cast through the In terms of sampling theory, although dropout acts
prism of signal processing theory, we compare andootrast the similarly to dither in decorrelating nonlinear digion
regularisation effects of dropout with those of dither. We products by perturbing the nonlinearity, it is matditive. A

illustrate some serious inherent limitations of drg@out and e . L
demonstrate that dither provides a far more effectie regulariser further critical difference between dropout ancheiitis that

which does not suffer from the same limitations. dropout discards a number of samples — a procassriay be
interpreted as stochastic decimation. One conseguehthis
Index terms—Deep learning, regularisation, dropout, dither. is that dropout introduces distortion. A secondsideration is

that, according to sampling theory, decimation najy
safely be performed following suitable low-pasgefilng.
[.  INTRODUCTION Hence, dropout must introduce aliasing and distortiThus,

In nonlinear signal processing, the use of additivise prior Unless this aliasing and distortion can be supprgssropout
to nonlinear processing (such as quantization wmctation) IS Ilkely. tp cause overfitting rather than prever]t it. In other
acts to decorrelate (or suppress) nonlinear distogiroducts. WOrds, it is predictable that dropout applied vsthall or no
This process is known adthering and can also be used inPatch averaging will result ianti-regularisation. .
discrete signal processing to mitigate aliasingéssresulting /N this paper, we illustrate that dither provides
from nonlinear distortion products which fall begbrthe regularisation which is independent of batch sizilst the
Nyquist limit. effect of dropout ranges from regularisation to i-ant

Deep neural networks [1] may be interpreted asrefiec "e€gularisation dependent upon the batch size.

(sampled) systems consisting of linear filters amahlinear
demodulation stages [2] and it has been sugge8idtdt the
inherent nonlinear distortion and aliasing contrébuto
problems of overfitting. Thus, in principle, if Hi#r acts to
suppress nonlinear distortion and aliasing it sth@l$o act to
regularise a DNN.

At face value,dropout [4] appears somewhat compatible
with ghther ar,]d IS knqwn_to be a usefull regl'”a“mwever’ Fig. 1. Example MNIST image. We took the 28x28 pixel images and
despite the cited motivation of ‘preventing co-ad#ipn’ [4],  unpacked them into a vector of length 784 to faneinput at the first layer
a coherent signal-processing-based rationale fopairt as of the DNN.
regulariser has not emerged. Furthermore, the @&mapir
results of dropout are typically conflated with $ko of IIl. METHOD
stochastic gradient descent (SGD) and/or batchageer SGD  Regularisation is critical in the so-called ‘smdéta regime’
and very little is known of possible dependencies e where the balance between parameters and dateveed
interactions between the two. towards the parameters. For case study, we chesevéfl-

From a signal processing point of view, the gramienknown computer vision problem of hand-written digit
necessary for SGD constitute the output of a higbspfilter classification using the MNIST dataset [5]. For theut layer
and the process of averaging these gradients oveateh we unpacked the images of 28x28 pixels into veatbtength
constitutes a low-pass filter. In the ubiquitouschebased 784. An example digit is given in Fig. 1. Pixeldénsities were
SGD, this combination results in a band-pass filfkerefore, normalized to zero mean. Replicating Hinton's [6]
batch size directly affects the bandwidth of thendbpass architecture, but using the biased sigmoid activafiinction
filter. This, in turn, constrains the process of By [2], we built a fully connected network of size %880x10




units, with a 10-unit softmax output layer, corr@sging to three classes of model were each independentlgritiated
the 10-way digit classification problem. and trained using SGD with batch sizes of 2, 4,88,32, 64,
In order to place ourselves in the small-data regime 128 and 256 (i.e., 256 = full training set). Eaeparate model
used only the first 256 training examples of the IIN was trained for 100 full-sweep iterations of SGDitleut
dataset and tested on the full 10,000 test examylegrained momentum) and the test error computed (over theOD0test
three versions of the model. The first version w@éned examples) at each iteration. For reliable comparissach
without any regularisation. The second was trawéd 50% model was trained from the exact same random rsgarti
dropout and the third version was trained with @ithFor weights. A learning rate (SGD step size) of 1 wsadufor all
training with dither, uniform noise of unit scaledazero mean training.
was added to the input (image only) data of ea¢cbhbahe
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Fig. 2. Regularisation during training: Dropout Versus Dither.a plots the test error function of SGD iterations, thee various batch sizes,
for the un-regularised modéisplots the same for the models trained with 50%pdubc plots the same for the models trained with dither.

In summary, without dither the models at small batizes
lll. RESULTS failed to learn anything useful and dropout madettens
Fig. 2a plots the test-error rates, as a functiofulbsweep worse. Thus, the prediction (derived from signadgassing
SGD iterations, for the un-regularised models afous batch theory) of dropout resulting in anti-regularisatiéor small
sizes. Performance is dependent upon batch sizepibdel is batch sizes appears to have been confirmed. Howexdr
essentially unable to learn anything useful whenlthtch size dither, the same models trained (with the samehbsizes)
is less than 16 and peaks for batch size of 32.F&glots the were able to achieve an impressive nearly 80%-cbuoe the
same for the models regularised using 50% dropAst. test set, despite only 256 training examples.
expected, performance is extremely dependent arh lste;
Performance is substantially worse (than withowpdut) for
the batch sizes of 2 and 4, is improved (relativad dropout) IV. DISCUSSION ANDCONCLUSION
for the batch size of 8 and is similar (to perfonme without In this paper, we have demonstrated that ditharsisperior
dropout) for the larger batch sizes. This tendsuggest that regulariser to dropout and that, unlike dropoute th
the regularisation provided by the data itself fagher regularisation provided by dither is more or lesdependent
frequencies) is realised relatively well by simglyeraging of batch size. We have argued that dither is sopei
over larger batches (hence there is little evidahtantage to dropout as regulariser due to the fact that itds dependent
dropout in this case). upon batch size and due to the fact that it is rieidy
Fig. 2c plots the test-error rate functions for thedels wideband and additive. We have also documentedhéofirst
trained with dither. As expected, relatively lititkependence time, paradoxical anti-regularisation effects ofombut at
on batch size is in evidence and, in all case$) leatrning rate small batch sizes.
and ultimate performance is starkly superior tqord.
Across all the models, there is a general trend tifar
batchsize of 32 to perform best (more obviouslyha non- ACKNOWLEDGMENT
dithered cases). This tends to suggest that tha idself AJRS did this work on the weekends and was supgdrye
regularises best when averaged over batches oih@2has his wife and children.
probably relates to the nature of the data.
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