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Abstract—Regularisation of deep neural networks (DNN) 

during training is critical to performance. By far the most 
popular method is known as dropout. Here, cast through the 
prism of signal processing theory, we compare and contrast the 
regularisation effects of dropout with those of dither. We 
illustrate some serious inherent limitations of dropout and 
demonstrate that dither provides a far more effective regulariser 
which does not suffer from the same limitations. 
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I. INTRODUCTION 

In nonlinear signal processing, the use of additive noise prior 
to nonlinear processing (such as quantization or truncation) 
acts to decorrelate (or suppress) nonlinear distortion products. 
This process is known as dithering and can also be used in 
discrete signal processing to mitigate aliasing issues resulting 
from nonlinear distortion products which fall beyond the 
Nyquist limit. 

Deep neural networks [1] may be interpreted as discrete 
(sampled) systems consisting of linear filters and nonlinear 
demodulation stages [2] and it has been suggested [3] that the 
inherent nonlinear distortion and aliasing contribute to 
problems of overfitting. Thus, in principle, if dither acts to 
suppress nonlinear distortion and aliasing it should also act to 
regularise a DNN. 

At face value, dropout [4] appears somewhat compatible 
with dither and is known to be a useful regulariser. However, 
despite the cited motivation of ‘preventing co-adaptation’ [4], 
a coherent signal-processing-based rationale for dropout as 
regulariser has not emerged. Furthermore, the empirical 
results of dropout are typically conflated with those of 
stochastic gradient descent (SGD) and/or batch-averaged SGD 
and very little is known of possible dependencies or 
interactions between the two. 

From a signal processing point of view, the gradients 
necessary for SGD constitute the output of a high-pass filter 
and the process of averaging these gradients over a batch 
constitutes a low-pass filter. In the ubiquitous batch-based 
SGD, this combination results in a band-pass filter. Therefore, 
batch size directly affects the bandwidth of the band-pass 
filter. This, in turn, constrains the process of SGD by 

preventing, to some degree, high-frequency (i.e., fine or 
abrupt) SGD steps from occuring. 

In terms of sampling theory, although dropout acts 
similarly to dither in decorrelating nonlinear distortion 
products by perturbing the nonlinearity, it is not additive. A 
further critical difference between dropout and dither is that 
dropout discards a number of samples – a process that may be 
interpreted as stochastic decimation. One consequence of this 
is that dropout introduces distortion. A second consideration is 
that, according to sampling theory, decimation may only 
safely be performed following suitable low-pass filtering. 
Hence, dropout must introduce aliasing and distortion. Thus, 
unless this aliasing and distortion can be suppressed, dropout 
is likely to cause overfitting rather than prevent it. In other 
words, it is predictable that dropout applied with small or no 
batch averaging will result in anti-regularisation. 

In this paper, we illustrate that dither provides 
regularisation which is independent of batch size, whilst the 
effect of dropout ranges from regularisation to anti-
regularisation dependent upon the batch size.  

 

 
Fig. 1. Example MNIST image. We took the 28x28 pixel images and 
unpacked them into a vector of length 784 to form the input at the first layer 
of the DNN. 

II. METHOD 

Regularisation is critical in the so-called ‘small-data regime’ 
– where the balance between parameters and data is skewed 
towards the parameters. For case study, we chose the well-
known computer vision problem of hand-written digit 
classification using the MNIST dataset [5]. For the input layer 
we unpacked the images of 28x28 pixels into vectors of length 
784. An example digit is given in Fig. 1. Pixel intensities were 
normalized to zero mean. Replicating Hinton’s [6] 
architecture, but using the biased sigmoid activation function 
[2], we built a fully connected network of size 784x100x10 



units, with a 10-unit softmax output layer, corresponding to 
the 10-way digit classification problem. 

In order to place ourselves in the small-data regime, we 
used only the first 256 training examples of the MNIST 
dataset and tested on the full 10,000 test examples. We trained 
three versions of the model. The first version was trained 
without any regularisation. The second was trained with 50% 
dropout and the third version was trained with dither. For 
training with dither, uniform noise of unit scale and zero mean 
was added to the input (image only) data of each batch. The 

three classes of model were each independently instantiated 
and trained using SGD with batch sizes of 2, 4, 8, 16, 32, 64, 
128 and 256 (i.e., 256 = full training set). Each separate model 
was trained for 100 full-sweep iterations of SGD (without 
momentum) and the test error computed (over the 10,000 test 
examples) at each iteration. For reliable comparison, each 
model was trained from the exact same random starting 
weights. A learning rate (SGD step size) of 1 was used for all 
training. 

 
 

 
 
Fig. 2. Regularisation during training: Dropout Versus Dither. a plots the test error function of SGD iterations, for the various batch sizes, 
for the un-regularised models b plots the same for the models trained with 50% dropout c plots the same for the models trained with dither. 
 

III.  RESULTS 

Fig. 2a plots the test-error rates, as a function of full-sweep 
SGD iterations, for the un-regularised models of various batch 
sizes. Performance is dependent upon batch size; The model is 
essentially unable to learn anything useful when the batch size 
is less than 16 and peaks for batch size of 32. Fig. 2b plots the 
same for the models regularised using 50% dropout. As 
expected, performance is extremely dependent on batch size; 
Performance is substantially worse (than without dropout) for 
the batch sizes of 2 and 4, is improved (relative to no dropout) 
for the batch size of 8 and is similar (to performance without 
dropout) for the larger batch sizes. This tends to suggest that 
the regularisation provided by the data itself (at higher 
frequencies) is realised relatively well by simply averaging 
over larger batches (hence there is little evident advantage to 
dropout in this case). 

Fig. 2c plots the test-error rate functions for the models 
trained with dither. As expected, relatively little dependence 
on batch size is in evidence and, in all cases, both learning rate 
and ultimate performance is starkly superior to dropout. 

Across all the models, there is a general trend for the 
batchsize of 32 to perform best (more obviously in the non-
dithered cases). This tends to suggest that the data itself 
regularises best when averaged over batches of 32 and this 
probably relates to the nature of the data. 

In summary, without dither the models at small batch sizes 
failed to learn anything useful and dropout made matters 
worse. Thus, the prediction (derived from signal processing 
theory) of dropout resulting in anti-regularisation for small 
batch sizes appears to have been confirmed. However, with 
dither, the same models trained (with the same batch sizes) 
were able to achieve an impressive nearly 80%-correct on the 
test set, despite only 256 training examples.  
 

IV. DISCUSSION AND CONCLUSION 

In this paper, we have demonstrated that dither is a superior 
regulariser to dropout and that, unlike dropout, the 
regularisation provided by dither is more or less independent 
of batch size. We have argued that dither is superior to 
dropout as regulariser due to the fact that it is not dependent 
upon batch size and due to the fact that it is inherently 
wideband and additive. We have also documented, for the first 
time, paradoxical anti-regularisation effects of dropout at 
small batch sizes. 
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