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Introduc1on	(1) 

•  Sta1s1cal	Machine	Transla1on	(SMT)	is	a	transla1on	paradigm	that	focuses	on	latent	feature	
design.	
–  word	alignment	
–  source	sentence	length	
–  target	sentence	length	
–  …	

•  Benefit:	Its	latent	structure	is	explainable.	
•  Shortcomings:	

–  expert	designed	feature	
–  expert	designed	transla1on	process	
–  long-distance	dependency	
–  …	

•  In	recent	years, Neural	Machine	Transla1on	(NMT)	has	achieved	the	state-of-the-art	results	
on	many	language	pairs,	e.g.,	English-to-French,	English-to-German,	Chinese-to-English,	etc.	



Introduc1on	(2) 

•  Neural	Machine	Transla1on	usually	adopts	an	encoder-decoder	structure	to	accommodate	
paired	languages.		

•  The	decoder	acts	as	a	language	model	which	incorporates	the	le:	context	but	ignores	the	
right	context.	

•  Is	this	right	context	useful?	
•  If	it’s	useful,	how	can	we	use	the	right	context?	
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Introduc1on	(3) 

•  Is	the	right	context	useful?	
–  Yes!	
–  Sutskever	et	al.	found	that	the	sequence-to-sequence	model	achieved	a	promising	

improvement	when	reversing	the	source	sentence	“a,	b,	c”	to	“c,	b,	a”	[1].	
–  A	significant	improvement	could	be	obtained	when	using	a	bi-direc1onal	RNN	rather	

than	a	uni-direc1onal	RNN	[2].	
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Introduc1on	(4) 

•  How	can	we	use	this	right	context?	
–  Beam	search	is	a	way	to	u1lize	the	right	context, but	to	a	limited	extent	[1][2].	 
–  We	propose	a	two-stage	transla1on	approach	with	the	idea	of	dra:ing-and-refinement	

to	tackle	this	problem.	The	dra:	contains	the	right	context.	
–  Novak	et	al.	proposed	a	similar	itera1ve	transla1on	approach	in	which	they	correct	the	

words	again	and	again	[3].	
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Learning	from	dra: 

•  Two-stage	transla1on	approach:	dra:ing-and-
refinement.	

•  Dra:ing:	the	source	sentence	X	is	translated	into	a	
dra:	.	

•  The	right	context	can	be	obtained	from	the	dra:.	
•  Refinement:	both	the	original	source	sentence	and	the	

dra:	are	translated	together. 



Experiments 

•  Experiments	were	conducted	on	two	Chinese-English	tasks.	
•  Dataset:		

–  large	NIST	corpora	with	1M	parallel	training	data.	
–  small	IWSLT	corpora	with	44K	parallel	training	data.	

•  Comparison	systems:		
–  Moses:	a	widely-used	SMT	system.	
–  Apen1on-based	NMT:	a	popular	NMT	system.	

•  Evalua1on	metric:	
–  we	used	the	case-insensi1ve	4-gram	NIST	BLEU	score. 



Conclusions 

•  The	target	sentence’s	right	context	is	informa1ve	and	provides	an	important	regula1on	for	
current	generated	word.	

•  Our	two-stage	transla1on	approach	can	u1lize	the	right	context	to	enhance	the	neural	
transla1on	model. 



Future	work 

•  Is	the	right	context	more	informa1ve	than	the	le:	context?	
•  Can	the	model	be	constructed	in	a	uniform	framework	so	that	we	don’t	have	to	conduct	two	

separate	training	processes?	
•  More	experiments	on	different	language	pairs	need	to	be	done	to	confirm	our	approach’s	

effect. 
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