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Introduction(1/4) 
 Topic model 

 Use document-level co-occurrence information to group 
semantically related words into a single topic. 

 

 LDA 

 The topic distribution of the document  

 The probability of the topic to emit this word 
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Introduction(2/4) 
 The probability of the topic to the word has some 

limitations. 
 Traditional LDA treats word as surface string, 

 Example: 
 Robot 

 Usually mean an electro-mechanical machine  

 In a film review, it may refer to the name of a film 

  In LDA  
 The probability of topic electronics technology to emit the word is 

much higher than the topic film.  

 With word sense information 

 Probability of topic film to this word sense film name is higher 
than that of topic electronics technology 
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Introduction(3/4) 
 We thus hypothesize that, if word senses are incorporated 

in topic models, a stronger indication of topic will be 
obtained. 

 Topic models  with word senses from lexical resources  
 WordNet ( Boyd-Graber et al., 2007; Chemudugunta et al., 

2008; Guo and Diab, 2011).  

 costly and hardly be complete.  

 Word Sense Induction (WSI)  
 Discover word senses from unannotated text 

 Have been integrated in information retrieval to resolve 
senses of query words (Schutze and Pedersen, 1995; Navigli 
and Crisafulli, 2010). 
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Introduction(4/4) 
 Two manners, i.e., sequential and co-inference, are 

proposed to incorporate the statistical word senses in 
the LDA framework. 

 

 Hierarchical Dirichlet Process (HDP) (Teh et al., 2004) 
to induce statistical word senses from corpora 
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Related work(1/2) 
 Semantic Document Representation Models 

 VSM 
 Ignore sematic relations. 

 Explicit Sematic Representation 
 The lexical ontologies are difficult to construct and can hardly be 

complete.  

 Latent Sematic Representation(Topic model) 
 Those models treat word as surface string.  
 One word may contain different meanings in different contexts 

 Integrate semantics from lexical resources into topic model 
framework 
 (Boyd-Graber et al., 2007; Chemudugunta et al., 2008; Guo and Diab, 

2011).  
 The coverage issue again leads to performance bottleneck.  
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Related work(2/2) 
 Word sense disambiguation and word sense induction. 

 The use of word sense 
 Information retrieval (Stokoe, 2003) and text classification (Tufi and 

Koeva, 2007). 
 Drawbacks: 

 Large, manually compiled lexical resources such as the WordNet database 
are required. 

 It is hard to decide the proper granularity of the word sense. 

 In this work, word sense induction (WSI) algorithm is adopted in 
automatically discovering senses of each word in the test dataset. 
 The Bayesian model (Yao and Durme ,2011) 

 HDP: find topic number automatically 
 It outperforms the state-of-the-art systems in SemEval-2007 evaluation 

(Agirre and Soroa, 2007). 

 Word sense induction algorithms have been integrated in information 
retrieval (Schutze and J. Pedersen, 1995; Navigli and Crisafulli, 2010). 
 The above researches only consider senses of words and do not investigate 

connection between words.  
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Topic Models Incorporating 
Statistical Word Senses  
 Motivation 

 Synonymy  

 different words carrying almost identical or similar meanings.  

 Polysemy  

 one single word carrying two or more senses at the same time. 

 Topic is not able to reflect meaning of word delicately. 

 Incorporating word senses 

 A topic is more directly relevant to a word meaning (i.e., sense) 
than a word due to polysemy;  

 Word senses are more proper to reflect synonymy than words.  
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WSI with HDP Algorithm 
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Incorporating Statistical Word 
Senses into Topic Model 
 Sequential Approach (SEQ) 

 

 Co-inference Approach (COI) 
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Sequential Approach (SEQ) 
 

 Word Sense Induction Part 

 Same as HDP 

 

 

 Document Presentation Part 
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Example 
 Robot 

 

 Topic1 : film 

 Topic2: electronics 
technique 

 

sense robot#1  
film: 0.159  
role: 0.069  
performance: 0.019 
... 
 

sense robot#2 
computer:    0.116 
system:        0.039 
software:     0.026 
... 
 

In the end, it's an inspired performance from 
Robot that keeps the film fresh 

There may be a computer operating system 
designed mainly for robots 
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Co-inference Approach (COI) 
 Can the topics of words make a positive impact on the 

indication of senses ? 

 

 Take the topics of words as pseudo feedback and co-
infer both topics and senses iteratively.  

 Word robot in topic film has a higher probability to 
contain sense robot#1.  

 The sense robot#1 has a higher probability to be assigned 
topic film. 
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 Document Presentation Part 

 Same as SEQ 

 Word Sense Induction Part 
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Extended Co-inference Approach 
(COX) 
 The standard COI approach takes the sense with the highest probability as the 

sense of the target word.   
 We now consider the whole sense distribution of the target word in its context  

 COX. 

 Three factors are considered to determine the topic of a word:  
 The topic distribution of the document 
 The probability of the topic to emit this word  
 The probability of the word and its topic to generate the sense distribution.  

 reflects the meaning contained by its context.  
 considers the sense distribution of the target word which is more precise. 

 Example: 
 In ROBOT, the most important character is an electro-mechanical machine 

whose software was upgraded to give it the ability to comprehend and generate 
human emotions 
 The illustrative sense distribution of this context is (0.2, 0.8).  
 In SEQ and COI, the sense will be set as robot#2 
 In COX, it will have a probability of robot#1. 
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Inference 
 Sequential Approach 

 
 

 Co-inference Approach 
  variables      assigning words to topics  
 variables       assigning context words of each target 

word to senses, base distributions of each target word     
and     .  

 COI 
 given the second kind of variables are fixed, the first kind can be 

sampled using the same scheme as SEQ.  
 Given the first kind of variables are fixed, the second kind can be 

sampled using the same scheme as described in (Teh et al., 2004) 
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COX 
 Similarly, given the first kind of variables are fixed, the 

second kind can be sampled using the same scheme as 
described in (Teh et al., 2004).  

 Hence the key issue is how to sample                given 
sense distributions.  
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Evaluation 
 Setup 

 Test dataset  

 TDT4 datasets 

 Reuters dataset 

 Evaluation task 

 Document clustering task 

 Evaluation criteria  

 Precision  

 Recall  

 F-Measure  

 

 

 

Dataset #doc #topic #words #content words 

TDT41 1270 38 18511 5457 

TDT42 617 33 11782 3548 

Reutes20 9101 20 25748 7454 
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Experiment  Result 
 Different Word Sense Incorporating Approaches 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method TDT41 TDT42 Reutes20 

LDA 0.735 0.852 0.483 

K-Means 0.727 0.843 0.501 
SEQ 0.776 0.865 0.491 
COI 0.825 0.874 0.597 

COX 0.864 0.905 0.612 
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Conclusion 
 In this paper, we present three approaches to incorporating word 

senses in topic models:  
 SEQ approach 

 COI approach  

 COX approach 

 Three conclusions can be drawn from the experimental results.  
 Replacing word surfaces with word senses is helpful in topic 

modeling.  

 The topics of words can make a positive impact on the indication of 
word senses thus improve word sense induction.  

 Using the regular sense distribution of the target word can get a 
better topic indication than that uses merely the definite sense with 
the highest probability.  
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