Incorporating Statistical Word Senses in Topic Model Guoyu Tang

Outlines

- Introduction
- Related Work
- Topic Models Incorporating Statistical Word Senses
- Inference
- Evaluation
- Conclusion

Introduction(1/4)

- Topic model
 - Use document-level co-occurrence information to group semantically related words into a single topic.
- LDA
 - The topic distribution of the document
 - The probability of the topic to emit this word

Introduction(2/4)

- The probability of the topic to the word has some limitations.
 - Traditional LDA treats word as surface string,
- Example:
 - Robot
 - Usually mean an electro-mechanical machine
 - In a film review, it may refer to the name of a film
 - In LDA
 - The probability of topic *electronics technology* to emit the word is much higher than the topic *film*.
 - With word sense information
 - Probability of topic film to this word sense film name is higher than that of topic electronics technology

Introduction(3/4)

- We thus hypothesize that, if word senses are incorporated in topic models, a stronger indication of topic will be obtained.
- Topic models with word senses from lexical resources
 - WordNet (Boyd-Graber et al., 2007; Chemudugunta et al., 2008; Guo and Diab, 2011).
 - costly and hardly be complete.
- Word Sense Induction (WSI)
 - Discover word senses from unannotated text
 - Have been integrated in information retrieval to resolve senses of query words (Schutze and Pedersen, 1995; Navigli and Crisafulli, 2010).

Introduction(4/4)

• Two manners, i.e., sequential and co-inference, are proposed to incorporate the statistical word senses in the LDA framework.

• Hierarchical Dirichlet Process (HDP) (Teh et al., 2004) to induce statistical word senses from corpora

Related work(1/2)

- Semantic Document Representation Models
 - VSM
 - Ignore sematic relations.
 - Explicit Sematic Representation
 - The lexical ontologies are difficult to construct and can hardly be complete.
 - Latent Sematic Representation(Topic model)
 - Those models treat word as surface string.
 - One word may contain different meanings in different contexts
 - Integrate semantics from lexical resources into topic model framework
 - (Boyd-Graber et al., 2007; Chemudugunta et al., 2008; Guo and Diab, 2011).
 - The coverage issue again leads to performance bottleneck.

Related work(2/2)

- Word sense disambiguation and word sense induction.
 - The use of word sense
 - Information retrieval (Stokoe, 2003) and text classification (Tufi and Koeva, 2007).
 - Drawbacks:
 - Large, manually compiled lexical resources such as the WordNet database are required.
 - It is hard to decide the proper granularity of the word sense.
 - In this work, word sense induction (WSI) algorithm is adopted in automatically discovering senses of each word in the test dataset.
 - The Bayesian model (Yao and Durme ,2011)
 - HDP: find topic number automatically
 - It outperforms the state-of-the-art systems in SemEval-2007 evaluation (Agirre and Soroa, 2007).
 - Word sense induction algorithms have been integrated in information retrieval (Schutze and J. Pedersen, 1995; Navigli and Crisafulli, 2010).
 - The above researches only consider senses of words and do not investigate connection between words.

Topic Models Incorporating Statistical Word Senses

- Motivation
 - Synonymy
 - different words carrying almost identical or similar meanings.
 - Polysemy
 - one single word carrying two or more senses at the same time.
 - Topic is not able to reflect meaning of word delicately.
 - Incorporating word senses
 - A topic is more directly relevant to a word meaning (i.e., sense) than a word due to polysemy;
 - Word senses are more proper to reflect synonymy than words.

LDA

- For each topic z:
 - a) choose $\phi_z \sim Dir(\beta)$.

$$P(z_{ij}=z|\pmb{z_{-ij}},\pmb{w}) \propto rac{n_{-ij,z}^{d_i}+lpha}{n_{-i,i}^{d_i}+Zlpha} imes rac{n_{-ij,z}^w+eta}{n_{-ij,z}+Weta}$$

- 2. For each document d_i : ϕ
 - a) choose $\theta_{d_i} \sim Dir(\alpha)$.
 - b) for each word w_{ij} in document d_i :
 - i. choose topic $z_{ij} \sim Mult(\theta_{d_i})$.
 - ii. choose word $w_{ij} \sim Mult(\phi_{z_{ij}})$.

WSI with HDP Algorithm

- 1. Choose $G_w \sim DP(\gamma_w, H)$.
- For each context window v_i of word w:
 - a) choose $G_{v_i} \sim DP(\rho_w, G_w)$.
 - b) for each context word c_{ij} of target word w:
 - i. choose $s_{ij} \sim G_{v_i}$.
 - ii. choose $c_{ij} \sim Mult(\eta_{s_{ij}})$.

Incorporating Statistical Word Senses into Topic Model

Sequential Approach (SEQ)

Co-inference Approach (COI)

Sequential Approach (SEQ)

Word Sense Induction Part

Same as HDP

- Document Presentation Part
- 1. For each topic z, choose $\phi_z \sim Dir(\beta)$.
- For each document d_i :
 - a) choose $\theta_{d_i} \sim Dir(\alpha)$.
 - b) For each word w_j in document d_i :
 - i. choose topic $z_{ij} \sim Mult(\theta_{d_i})$.
 - ii. choose sense $s_{ij} \sim Mult(\phi_{z_{ij}})$.

Example

Robot

- Topic1 : film
- Topic2: electronics technique

sense *robot*#1
film: 0.159
role: 0.069
performance: 0.019

sense *robot*#2 computer: 0.116 system: 0.039 software: 0.026

In the end, it's an inspired performance from Robot that keeps the film fresh

There may be a computer operating system designed mainly for robots

Co-inference Approach (COI)

- Can the topics of words make a positive impact on the indication of senses ?
- Take the topics of words as pseudo feedback and coinfer both topics and senses iteratively.
 - Word *robot* in topic *film* has a higher probability to contain sense *robot*#1.
 - The sense *robot#1* has a higher probability to be assigned topic *film*.

- Document Presentation Part
 - Same as SEQ
- Word Sense Induction Part

- b) For each topic z, $choose G_{wz} \sim DP(\rho_w, G_w)$.
- 2. For each document d_{i} ,
 - a) For each context v_j of word w_j :
 - i. choose $G_{ij} \sim DP(\kappa_{wz}, G_{wz})$.
 - For each context word c_k of target word w_j:
 - 1) choose $s'_{ijk} \sim G_{ij}$.
 - 2) choose $c_{ijk} \sim Mult(\eta_{s_{ijk}}) +$
 - 3) set $s_{ij} = \arg \max_s P(s_{ij}|G_{ij})$

Extended Co-inference Approach (COX)

- The standard COI approach takes the sense with the highest probability as the sense of the target word.
- We now consider the whole sense distribution of the target word in its context
 - COX.
- Three factors are considered to determine the topic of a word:
 - The topic distribution of the document
 - The probability of the topic to emit this word
 - The probability of the word and its topic to generate the sense distribution.
 - reflects the meaning contained by its context.
 - considers the sense distribution of the target word which is more precise.
- Example:
 - In ROBOT, the most important character is an electro-mechanical machine whose software was upgraded to give it the ability to comprehend and generate human emotions
 - The illustrative sense distribution of this context is (0.2, 0.8).
 - In SEQ and COI, the sense will be set as robot#2
 - In COX, it will have a probability of robot#1.

- 1. For each word $w: \varphi$
 - a) choose $G_w \sim DP(\gamma_w, H)$.
 - b) For each topic z, ω choose $G_{wz} \sim DP(\rho_w, G_w)$.
- 2. For each topic z, choose $\phi_z \sim Dir(\beta)$
- 3. For each document d_i :
 - a) choose $\theta_{d_i} \sim Dir(\alpha)$.
 - b) For each word w_j in document d_i :
 - i. choose topic $z_{ij} \sim Mult(\theta_{d_i})$.
 - ii. choose word $w_{ij} \sim Mult(\phi_{z_{ij}})$
 - iii. choose $G_{ij} \sim DP(\kappa_{wz}, G_{wz})$.
 - iv. For each context word c_k in context v_j of target word w_j :
 - 1) $\frac{\text{choose } s'_{ijk} \sim G_{ij}}{}$.
 - 2) choose $c_{ijk} \sim Mult(\eta_{s_{ijk}}) \varphi$

Inference

Sequential Approach

$$P(z_{ij} = z | \boldsymbol{z_{-ij}}, \boldsymbol{s}) \propto \frac{n_{-ij,z}^{d_i} + \alpha}{n_{-ij}^{d_i} + Z\alpha} \times \frac{n_{-ij,z}^{s} + \beta}{n_{-ij,z} + S\beta}$$

- Co-inference Approach
 - variables $z = \{z_{ij}\}$ assigning words to topics
 - variables $s = \{s_{ijk}\}$ assigning context words of each target word to senses, base distributions of each target word G_w and $\{G_{wz}\}$.
 - COI
 - given the second kind of variables are fixed, the first kind can be sampled using the same scheme as SEQ.
 - Given the first kind of variables are fixed, the second kind can be sampled using the same scheme as described in (Teh et al., 2004)

COX

- Similarly, given the first kind of variables are fixed, the second kind can be sampled using the same scheme as described in (Teh et al., 2004).
- Hence the key issue is how to sample $z = \{z_{ij}\}$ given sense distributions.

$$P(z_{ij} = z | \mathbf{z_{-ij}}, \mathbf{s}, \mathbf{w})$$

$$\propto \frac{n_{-ij,z}^{d_i} + \alpha}{n_{ij}^{d_i} + Z\alpha} \frac{n_{-ij,z}^{w} + \beta}{n_{-ij,z} + W\beta} \frac{\prod_{s \in \{s_w\}} \prod_{g=0}^{n_{ij}^{s-1}} (\kappa_{wz} \pi_{zs} + g)}{\prod_{g=0}^{C_{ij}-1} (\kappa_{wz} + g)}$$

Evaluation

- Setup
 - Test dataset
 - TDT4 datasets
 - Reuters dataset
 - Evaluation task
 - Document clustering task
 - Evaluation criteria
 - Precision
 - Recall
 - F-Measure

Dataset	#doc	#topic	#words	#content words
TDT41	1270	38	18511	5457
TDT42	617	33	11782	3548
Reutes20	9101	20	25748	7454

Experiment Result

Different Word Sense Incorporating Approaches

Method	TDT41	TDT42	Reutes20
LDA	0.735	0.852	0.483
K-Means	0.727	0.843	0.501
SEQ	0.776	0.865	0.491
COI	0.825	0.874	0.597
COX	0.864	0.905	0.612

Conclusion

- In this paper, we present three approaches to incorporating word senses in topic models:
 - SEQ approach
 - COI approach
 - COX approach
- Three conclusions can be drawn from the experimental results.
 - Replacing word surfaces with word senses is helpful in topic modeling.
 - The topics of words can make a positive impact on the indication of word senses thus improve word sense induction.
 - Using the regular sense distribution of the target word can get a better topic indication than that uses merely the definite sense with the highest probability.

Reference(1/2)

- Agirre, E. and Soroa, A. 2007. Semeval-2007 tasko2: Evaluating word sense induction and discrimination systems. In SemEval2007.
- Blei, D.M., Ng, A. Y., and Jordan, M.I. 2003. Latent dirichlet allocation. J. Machine Learning Research (3):993-1022.
- Body-Graber, J., Blei, D.M. and Zhu, X. 2007. A topic model for word sense disambiguation. In *EMNLP-CoNLL*'2007:1024-1033.
- Brody, S., Lapata, M. 2009. Bayesian word sense induction. In *EACL*'2009: 103-111.
- Chemudugunta, C., Smyth, P. and Steyvers, M. 2008. Combining concept hierarches and statistical topic models. In *CIKM*'2008: 1469-1470.
- Denkowski, M. 2009. A Survey of Techniques for Unsupervised Word Sense Induction. *Technical Report*.Language Technologies Institute, Carnegie Mellon University
- Dietz, L., Bickel., S., Scheffer, T., 2007. Unsuperservised prediction of citation influence. In *ICML*'2007: 233-240.
- Gabrilovich, E. and Markovitch, S.2007. Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis. In *IJCAI*'2007, Hyderabad, India, January 2007
- Griffiths, T. L., Steyvers, M. 2004. Finding scientific topics. In *Proceedings of the National Academy of Sciences*, 101:5228-5235
- Guo, W. and Diab, M. 2010. Combining orthogonal monolingual and multilingual sources of evidence for all words wsd. In *ACL*'2010: 1542-1551.
- Ferguson, T.S.. 1973. A Bayesian Analysis of Some Nonparametric Problems. *The Annals of Statistics*, 1(2): 209-330
- Hotho, A., Staab, S., Stummem, G.. 2003. WordNet improves text document clustering. In SIGIR2003 semantic web workshop. ACM, New York, pp. 541-544.
- Huang, H., Kuo, Y., 2010. Cross-Lingual Document Representation and Semantic Similarity Measure: A Fuzzy Set and Rough Set Based Approach. Fuzzy Systems, IEEE Transactions, vol.18, no.6, pp.1098-1111.
- Kong, J. and Graff, D. 2005. TDT4 multilingual broadcast news speech corpus. In LDC link: http://www.ldc.upenn.edu/Catalog/index.jsp

Reference(2/2)

- Navigli, R. and Crisafulli, G. 2010. Inducing word senses to improve web search result clustering. *Proc. of EMNLP* '10:116-126.
- Oakes, M. P., and Tait, J. 2003. Word sense disambiguation in information retrieval revisited. In *Proc. of SIGIR* '03:159-166.
- T. K. Landauer and S. T. Domais(1997). A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction and Representation of Knowledge. *Psychological Review*. 104(2):211-240.
- Lewis, D.. Reuters-21578 text categorization test collection. http://www.research.att.com/~lewis, 1997.
- Schmid, H.. 1994. Probabilistic Part-of-Speech Tagging Using Decision Trees. In EMNLP'1994, Manchester, UK
- Schutze, H. and Pedersen, J. 1995. Information Retrieval based on word senses. In SDAIR'95: 161–175.
- Steinbach, M., Karypis, G., Kumar, V.. 2000. A comparison of document clustering techniques. In *KDD*'2000 Workshop on Text Mining.
- Stokoe, C., Oakes, M. P., and Tait, J. 2003. Word sense disambiguation in information retrieval revisited. In *SIGIR* '03:159-166.
- Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. 2004. Hierarchical dirichlet processes. In NIPS, 2004.
- Tufi, D., and Koeva, S.. 2007. Ontology-Supported Text Classification Based on Cross-Lingual Word Sense Disambiguation. In *WILF* '07: 447-455.
- Wang, X., McCallum, A., Wei, X.. 2007. Topical N-Grams: Phrase and Topic Discovery, with an Application to Information Retrieval, In *ICDM*'2007: 697-702, October 28-31, 2007
- Yao, X., Durme, B.V.. 2007. Nonparametric Bayesian Word Sense Induction. In *TextGraphs-6* Workshop:10-14, June 19-24, 2011.

Thank you!

Q&A