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self-distillation with no labels(DINO)
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Figure 2: Self-distillation with no labels. We illustrate DINO in
the case of one single pair of views (x1, x2) for simplicity. The
model passes two different random transformations of an input
image to the student and teacher networks. Both networks have
the same architecture but different parameters. The output of the
teacher network is centered with a mean computed over the batch.
Each networks outputs a K dimensional feature that is normalized
with a temperature softmax over the feature dimension. Their
similarity is then measured with a cross-entropy loss. We apply a
stop-gradient (sg) operator on the teacher to propagate gradients
only through the student. The teacher parameters are updated with
an exponential moving average (ema) of the student parameters.
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* Algorithm

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

# gs, gt: student and teacher networks

# C

center (K)

# tps, tpt: student and teacher temperatures

# 1,

m: network and center momentum rates

gt.params = gs.params

for

def

X in loader: # load a minibatch x with n samples
xl, x2 = augment (x), augment (x) # random views

sl, s2 = gs(xl), gs(x2) # student output n-by-K
tl, t2 = gt (x1), gt(x2) # teacher output n-by-K

loss = H(t1l, s2)/2 + H(t2, sl)/2
loss.backward() # back-propagate

# student, teacher and center updates
update (gs) # SGD

gt.params = l*gt.params + (l-1)xgs.params
C = mxC + (l-m)xcat([tl, t2]) .mean(dim=0)

H(t, s):
t = t.detach() # stop gradient
s = softmax (s / tps, dim=1)

t = softmax((t — C) / tpt, dim=1) # center + sharpen

return - (t * log(s)).sum(dim=1) .mean ()
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Table 3: Image retrieval. We compare the performance in retrieval
of off-the-shelf features pretrained with supervision or with DINO
on ImageNet and Google Landmarks v2 (GLDv2) dataset. We
report mAP on revisited Oxford and Paris. Pretraining with DINO
on a landmark dataset performs particularly well. For reference, we
also report the best retrieval method with off-the-shelf features [57].

ROx
Pretrain  Arch. Pretrain M H M H
Sup. [57] RNI0I+R-MAC ImNet 498 18.5 74.0 52.1
Sup. VIiT-S5/16 ImNet 33.5 89 63.0 372
DINO ResNet-50 ImNet 354 11.1 559 275
DINO VIiT-S/16 ImNet 41.8 13.7 63.1 344

DINO ViT-S/16 GLDv2 515 243 753 51.6
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* Motivation
* we cannot be sure if all the negative samples belong to the classes different from the positive sample’s class.

* non-contrastive methods, do not require negative samples, so they are free from the issue above.
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* Methods
* DINO

* adapted a non contrastive self-supervised learning technique, DINO, first proposed in computer vision,
to the speech domain for the self-supervised pre-trained model
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COMPARISON OF DINO TO THREE CONTRASTIVE LEARNING METHODS IN € 0551 A °o®
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0501 o XyuyX”
| Method [ EER(%) | x X
DINO 483 20 a0 60 20 0 60
AP+AAT [18] 8.65 PCA dimension PCA dimension
MoCo (ProtoNCE) [19] 8.23
CSSL W/ Lap + Len(mse) (201 8.28 Fig. 3. Frozen SER. Dotted lines are accuracies when PCA is not used

TABLE VI
OVERVIEW OF FINE-TUNING EXPERIMENTS FOR SV. FT2 A AM MEANS THAT THE AAM LOSS WAS USED IN THE FINE-TUNING WHILE FT2 USES A CROSS
ENTROPY LOSS. X-VECTOR (-) MEANS THAT THE PRE-TRAINING OF THE X-VECTOR SYSTEM DID NOT USE VOXCELEB2 dev x-vector DINO
0.80 —
\ [ Pretraining(-Finetuning) | labeled data (pre-training, fine-tuning) | back-end | labeled data (backend) | EER (%) | MinDCF(p=0.01) | . Lsr:rM _______ x§__ "':-L
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9 x-vector VoxCeleb2 dev, none CS none 2.18 0.205 ' 20 20 60 20 20 60
10 PLDA VoxCelebl dev 1.87 0.211 PCA dimension PCA dimension
11 X-vector-FT2 VoxCeleb2 dev, VoxCelebl dev CS none 2.46 0.298
12 PLDA VoxCelebl dev 1.98 0.215 . . . . .
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* MoCo speaker embedding system
* DINO speaker embedding system
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Fig. 1: The baseline MoCo and DINO training diagrams.
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* MoCo speaker embedding system

Vi Vi > 0.8 X vy - v, j € [1, K], (7a)
Voi - Vi > 0.4, (7b)
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TABLE V: System comparisons on Vox1 test set (EER in%).

TABLE III: The SV performances of MoCo and DINO supervision | method Vox1 test
baseline systems w.r.t. three main stream architectures on self-sup i-vector [42 153
Voxcelebl test set. We use R34L and E-TDNN to represent Sﬂhl:-ﬂup &P'Eﬁﬁg CE [ g-g
selr-sup oL o+Froto ‘.
ResNetSE34L and ECAPA-TDNN to save some space. self-sup MoCo (E-TDNN) [52 73
— - — self-sup Siaseme+SSR 7.0
Training EER(in%) minDCF self-sup C3-MoCo (system 3) 6.4
Data TDNN R34L E-TDNN | TDNN R34L E-TDNN
self-sup DINO 4.8
Vox 1 MoCo 11.3 108 9.8 ‘ 076  0.72 0.67 self-sup C3-DINO; (system 8) 25
Vox2 MoCo 8.5 8.3 7.3 0.63 0.62 0.61 self-sup C3-DINO, (system 8 + LDA) 22
MO Bt I A ‘ A semi-sup | GCL+PLDA (15% label) [43 6.0
. : : i : : i semi-sup MoCo+SupCon (15% label) 4.3
sup x—vectorm 3.1
sup ECAPA-TDNN 0.9
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