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Related concepts

 Disentangled representation
 real-world data is generated by a few explanatory factors of variation

» factorization

« contain all the information present in x in a compact and interpretable
structure

» seperate dimensions, independent features

e Distributed vs Disentangled Representation
* High-dimensional vs low-dimensional | >
» Variational Autoencoders a -8
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Two-step generative process



Inductive bias

The inductive bias (also known as learning bias) of a learning
algorithm is the set of assumptions that the learner uses to
predict outputs given inputs that it has not encountered.

 Maximum conditional independence
* Minimum cross-validation error

* Maximum margin

* Minimum description length

* Minimum features

* Nearest neighbors

https://en.wikipedia.org/wiki/Inductive_bias



Impossibility

* The unsupervised learning of disentangled representations is
fundamentally impossible without inductive biases both on the
considered learning approaches and the data sets.



Disentanglement example

disentanglement_lib

Visualization of the ground-truth factors of the Shapes3D data set: Floor color (upper left), wall color
(upper middle), object color (upper right), object size (bottom left), object shape (bottom middle), and
camera angle (bottom right).

https://ai.googleblog.com/2019/04/evaluating-unsupervised-learning-of.html



Disentanglement example

disentanglement_lib

10-dimensional representation vector. The ground-truth factors wall and floor color as well as rotation of
the camera are disentangled (see top right, top center and bottom center panels), while the ground-truth
factors object shape, size and color are entangled (see top left and the two bottom left images).

https://ai.googleblog.com/2019/04/evaluating-unsupervised-learning-of.html



Impossibility

Theorem 1. Ford > 1, let z ~ P denote any distribution
which admits a density p(z) = Hle p(z;). Then, there
exists an infinite family of bijective functions f : supp(z) —
supp(z) such that i&—fﬂ # 0 almost everywhere for all
i and j (i.e., z and f (Jz] are completely entangled) and

P(z < u) = P(f(z) < u) for all u € supp(z) (i.e., they
have the same marginal distribution).



Impossibility

Consider the commonly used “intuitive” notion of disentan-
glement which advocates that a change in a single ground-
truth factor should lead to a single change in the repre-
sentation. In that setting, Theorem | implies that unsu-
pervised disentanglement learning is impossible for arbi-
trary generative models with a factorized prior’ in the fol-
lowing sense: Assume we have p(z) and some P(x|z)
defining a generative model. Consider any unsupervised
disentanglement method and assume that it finds a repre-
sentation r(x) that is perfectly disentangled with respect
to z in the generative model. Then, Theorem 1 implies
that there is an equivalent generative model with the la-
tent variable z = f(z) where z is completely entangled
with respect to z and thus also r(x): as all the entries
in the Jacobian of f are non-zero, a change in a single
dimension of z implies that all dimensions of z change.
Furthermore, since f is deterministic and p(z) = p(z) al-
most everywhere, both generative models have the same
marginal distribution of the observations x by construction,
ie, P(x) = [ p(x|z)p(z)dz = [ p(x|2)p(z)dz. Since the
(unsupervised) disentanglement method only has access to
observations x, it hence cannot distinguish between the two
equivalent generative models and thus has to be entangled
to at least one of them.




Methods: VAE + regularizer

Beta-VAE, (Higgins et al., 2017);

Fix capacity of VAE bottleneck

Annealed-VAE, (Burgess et al., 2017);
Progressively increase capacity of VAE bottleneck
Factor-VAE, (Kim & Mnih, 2018);

Penalize Total Correlation with adversarial training.
Beta-TCVAE, Chen et al,, 2018;

Penalize Total Correlation with Monte Carlo estimate
DIP-VAE | and ll, Kumar et al., 2018

Match moments with a disentangled prior.

Key idea: regularize such that the aggregated posterior factorizes



Metrics

Beta-VAE Metric, (Higgins et al,, 2017);

Accuracy of a linear classifier that predicts the index of a
fixed factor of variation.

Factor-VAE Metric, (Kim & Mnih, 2018);

Accuracy of a majority vote classifier that predicts the index
of a fixed factor of variation.

Mutual Information Gap, (Chen et al, 2018);
Normalized gap in mutual information between the highest
and second highest coordinate in r(x).

SAP score, (Kumar et al., 2018);

Average difference of the prediction error of the two most
predictive latent dimensions for each factor.

DCI Disentanglement, (Eastwood & Williams, 2018);
Entropy of the predictive importance of each dimension of
r(x).

Modularity, (Ridgeway & Mozer) 2018;

Measure if each dimension of r(x) depends on at most a
factor of variation using their mutual information.



Can current methods enforce a uncorrelated
aggregated posterior and representation?

— VAE " F-VAE — FactorVAE — TCVAE — DIP-VAE-I —  DIP-VAE-II

, Metric = TC (sampled) |,

, Metric = TC (mean) |
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Figure 1. Total correlation based on a fitted Gaussian of the sam-
pled (left) and the mean representation (right) plotted against reg-
ularization strength for Color-dSprites and approaches (except
AnnealedVAE). The total correlation of the sampled representation
decreases while the total correlation of the mean representation
increases as the regularization strength is increased.

Mean vector of the
Gaussian encoder as
the representation
VS

Sample from the
Gaussian encoder

It is not clear whether a
factorizing aggregated
posterior also ensures that the
dimensions of the mean
representation are uncorrelated.



How much do the disentanglement metrics
agree”?
* All disentanglement metrics except Modular ity appear to be

correlated. However, the level of correlation changes between
different data sets.



How important are different models and
hyperparameters for disentanglement?
* how disentanglement is affected by the model choice, the

hyperparameter selection and randomness (in the form of
different random seeds).



How important are different models and
hyperparameters for disentanglement?
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P 7, (LRt EaciaaVAT: dinde. toi sacki fethiod o CaraD. (in the form of the regularization strength). The objective

Models are abbreviated (0=3-VAE, 1=FactorVAE, 2=3-TCVAE, function appears to have less impact.
3=DIP-VAE-I, 4=DIP-VAE-II, 5=AnnealedVAE). The variance is

due to different hyperparameters and random seeds. The scores are

heavily overlapping. (right) Distribution of FactorVAE scores for

FactorVAE model for different regularization strengths on Cars3D.

In this case, the variance is only due to the different random seeds.

We observe that randomness (in the form of different random

seeds) has a substantial impact on the attained result and that a

good run with a bad hyperparameter can beat a bad run with a

good hyperparameter.



Are there reliable recipes for model selection?

* Hyperparameter selection
* No consistent model, object function, hyperparameter

 Model selection based on unsupervised scores.
 reconstruction error, the KL divergence, ELBO, ...
 unlikely to be successful in practice

« Hyperparameter selection based on transfer.

» Transfer of good hyperparameters between metrics and data sets
does not seem to work as there appears to be no unsupervised way to
distinguish between good and bad random seeds on the target task.



Are these disentangled representations
useful for downstream tasks in terms of the
sample complexity of learning?

* recover the true factors of variations from the learned
representation using either multi-class logistic regression (LR)
or gradient boosted trees (GBT).

* the lack of concrete examples of useful disentangled
representations necessitates that future work on
disentanglement methods should make this point more explicit.



