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Deep Sentence Embedding using Long Short Term
Memory Networks

Basic RNN
Embedding vector
. ‘ﬁ“rrec 1“‘}"'an: 1;"“".Trf:-:' P
y(l) p—— y(2) —> - —a{¥(m)
Y [
IW’ W W
11(1]' l]l[?]l 11 m)
_ _ r
Y“-“h ‘-Ilv’h ‘-Ilv’h
X(l} X 2} X(m.j

Figure 1. The basic architecture of the RNN for sentence embed-
ding, where temporal recurrence is used to model the contextual
information across words in the text string. The hidden activation
vector corresponding to the last word is the sentence e|mbedding
vector (blue).
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Deep Sentence Embedding using Long Short Term

Memory Networks
RNN with LSTM
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Figure 2. The basic LSTM architecture used for sentence embed-
ding
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Object function
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Object function
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Figure 3. The click-through signal can be used as a (binary) in-
dication of the semantic similarity between the sentence on the
query side and the sentence on the document side. The negative
samples are fandomly sampled from the training data.
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Analysis

o Query: “hotels in shanghai”

e Document: “shanghai hotels accommodation hotel in
shanghai discount and reservation™



ATTENUATING UNIMPORTANT INFORMATION
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Figure 4. Query: “hotels in shanghai”. Since the sentence
ends at the third word, all the values to the right of it are zero
(blue color).
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Figure 5. Document: “shanghai hotels accommodation hotel
in shanghai discount and reservation”. Since the sentence
ends at the ninth word, all the values to the right of it are zero
(green color).
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Figure 6. Activation values, y(t), of 10 most active cells for
Query: “hotels in shanghai”
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Figure 7. Activation values, y(#), of 10 most active cells for Doc-
ument: “shanghai hotels accommodation hotel in shanghai dis-
count and reservation”

Table 2. Key words for document: “shanghai hotels accommodation hotel in shanghai discount and reservation”

shanghai | hotels | accommeodation | hotel | in | shanghai | discount | and | reservation

Number of assigned
cells out of 10 - 4 3 8 1 8 5 3 4
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Result

Model NDCG@1 | NDCG@3 | NDCG@10
BM25 30.5% 32.8% 38.8%
PLSA (T=500) 30.8% 33.7% 40.2%
DSSM (nhid = 288/96), 2 Layers 31.0% 34.4% 41.7%
CLSM (nhid = 288/96), 2 Layers 31.8% 35.1% 42.6%
RNN (nhid = 288), 1 Layer 31.7% 35.0% 4239
LSTM-RNN (ncell =96), 1 Layer 33.1% 36.5 % 43.6%




DSSM

Learning Deep Structured Semantic Models for Web Search using Clickthrough Data(13)
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Figure 1: Ilustration of the DSSM. It uses a DNN to map high-dimensional sparse text features into low-dimensional dense features in a semantic space. The
first hidden layer, with 30k units, accomplishes word hashing. The word-hashed features are then projected through multiple layers of non-linear projections.

The final laver’s neural activities in this DNN form the feature in the semantic space.
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Figure 1: Ilustration of the DSSM. It uses a DNN to map high-dimensional sparse text features into low-dimensional dense features in a semantic space. The
first hidden layer, with 30k units, accomplishes word hashing. The word-hashed features are then projected through multiple layers of non-linear projections.
The final laver’s neural activities in this DNN form the feature in the semantic space.
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CLSM

Query/document online

Sliding window

Word-n-gram layer <s> online auto

Wy

Letter-trigram layer [; 90K
Convolution matrix W, l
Convolutional layer h; ICDD
Max-pooling —

_ Take max at each
Max-pooling layer v 300 | dimension across

all word-trigram

Semantic matrix W, features
Semantic layer y 128

A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval
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