
word2vec

1

Abstract

1. what is word2vec?

2. previous work

3. architectures of Mikolov’s

4. result and comparison

5. Hyper parameters and tricks

6. extensions

2

What is word2vec?

1. continuous vector representations of
words

2. capture syntactic and semantic word
similarities

3. state-of-art performance and high
efficiency

3

previous work

1. Learning representations by back-
propagating errors(Hinton, 1986)

2. NNLM(Bengio 2003)

3. RNNLM: time-delayed connections within
hidden layer, short term memory

4

Architecture
Continuous
Bag-of-Words

Model

5

Architecture
Continuous
Skip-gram
Model

Basic Architecture

Skip-gram:

1. Objective(log likelihood) function:

2. Represent input(vocabulary) and output(context)
word vector separately, 2*V vectors(V is dict size)

3. stochastic gradient ascent to maximize objective
function, time cost proportional to V

7

Efficient Architecture
hierarchical softmax

1. Huffman Tree

2. V-1 inner node and V word have separate
representation

3. Each word(leaf node) can be reached from the
root, average L(w) is log(V), now time cost per
gradient calculation?

4. gradient formula derivation is key

8

hierarchical softmax

Computational efficient because of Huffman tree:

1. proportional to Log(V)

2. assigns short codes to the frequent words which results in fast
training

Explanation:

1. use binary classification to approximate multiple classification

2. inner node vector may have some semantic meaning

9

Negative Sampling

Replace log(P(WO|WI)) in objectie function with:

Pn(w):

motivation from NCE: good models differentiate data
from noise

prevent all the vectors from having the same value by
disallowing some (w, c) pair(in the Explanation paper)

10

sub-sampling

1. reason: frequent words have less information

2. discard probability:

3. contribution:

faster training

better vector for uncommon words(widen the sliding window)

11

Training process

1. read corpus and calculate each word’s count

2. sort word array by word count(word index stored in hash
table), pruning uncommon words

3. construct Huffman tree

3. read a sub-sentence from corpus(sub-sampling)

4. sliding window(window size random) within a sub-sentence

5. hierarchical softmax

6. negative subsampling

Result and Comparison

13

Hyper parameters

-size: vector dimension

-window: context window size

-sample: sub-sampling threshold

-hs: whether using hierarchical softmax

-negative: num of negative sample

-min-count: pruning threshold

-alpha: learning rate

-cbow: whether using CBOW

14

Hyper parameter
advices

1. CBOW is faster while Skip-gram has better performance, especially
for uncommon words

2. softmax is efficient and good for uncommon wor

3. negative sampling is good for common words

4. sub-sampling leads to better performance and higher efficiency,
sample between 1e-3 and 1e-5 is recommended.

5. vector size: the higher the better, but not often the case

6. window size: skip-gram: about 10, CBOW: about 5

Tricks

1. exponent precompute(discretization)

2. negative sampling method

16

Tricks

3. word hash

17

Extensions

phrase vector

Paragraph Vector

18

Paragraph Vector

bag-of-words: ignore
word orders and word
semantic

various length

application: text
classification and
sentiment analysis

19

Thanks!

20

