word2vec

1

Abstract

- I. what is word2vec?
- 2. previous work
- architectures of Mikolov' s
- 4. result and comparison
- 5. Hyper parameters and tricks
- 6. extensions

What is word2vec?

- continuous vector representations of words
- capture syntactic and semantic word similarities
- 3. state-of-art performance and high efficiency

previous work

- Learning representations by backpropagating errors (Hinton, 1986)
- NNLM (Bengio 2003)
- RNNLM: time-delayed connections within hidden layer, short term memory

Architecture Continuous Bag-of-Words Model

Architecture Continuous Skip-gram Model

Basic Architecture

• Skip-gram:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j} | w_t) \qquad () \qquad p(w_O | w_I) = \frac{\exp\left(v_{w_O}^{\prime} {}^{\mathsf{T}} v_{w_I}\right)}{\sum_{w=1}^{W} \exp\left(v_{w}^{\prime} {}^{\mathsf{T}} v_{w_I}\right)}$$

- Represent input(vocabulary) and output(context)
 word vector separately, 2*V vectors(V is dict size)
- 3. stochastic gradient ascent to maximize objective function, time cost proportional to V

Efficient Architecture hierarchical softmax

• 1. Huffman Tree $p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left(\left[n(w, j+1) = \operatorname{ch}(n(w, j))\right] \cdot v'_{n(w, j)}^{\top} v_{w_I}\right)$

- V-1 inner node and V word have separate representation
- 3. Each word(leaf node) can be reached from the root, average L(w) is log(V), now time cost per gradient calculation?
- 4. gradient formula derivation is key

hierarchical softmax

- Computational efficient because of Huffman tree:
- 1. proportional to Log(V)
- assigns short codes to the frequent words which results in fast training
- Explanation:
- 1. use binary classification to approximate multiple classification
- 2. inner node vector may have some semantic meaning

Negative Sampling

 prevent all the vectors from having the same value by disallowing some (w, c) pair (in the Explanation paper)

sub-sampling

I. reason: frequent words have less information

• 2. discard probability:

$$P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}}$$

- 3. contribution:
- faster training
- better vector for uncommon words (widen the sliding window)

Training process

- 1. read corpus and calculate each word's count
- Sort word array by word count(word index stored in hash table), pruning uncommon words
- 3. construct Huffman tree
- 3. read a sub-sentence from corpus(sub-sampling)
- 4. sliding window(window size random) within a sub-sentence
- 5. hierarchical softmax
- 6. negative subsampling

Result and Comparison

Table 4: Comparison of publicly available word vectors on the Semantic-Syntactic Word Relation-
ship test set, and word vectors from our models. Full vocabularies are used.

Model	Vector	Training	Accuracy [%]		
	Dimensionality	words			
			Semantic	Syntactic	Total
Collobert-Weston NNLM	50	660M	9.3	12.3	11.0
Turian NNLM	50	37M	1.4	2.6	2.1
Turian NNLM	200	37M	1.4	2.2	1.8
Mnih NNLM	50	37M	1.8	9.1	5.8
Mnih NNLM	100	37M	3.3	13.2	8.8
Mikolov RNNLM	80	320M	4.9	18.4	12.7
Mikolov RNNLM	640	320M	8.6	36.5	24.6
Huang NNLM	50	990M	13.3	11.6	12.3
Our NNLM	20	6B	12.9	26.4	20.3
Our NNLM	50	6B	27.9	55.8	43.2
Our NNLM	100	6B	34.2	64.5	50.8
CBOW	300	783M	15.5	53.1	36.1
Skip-gram	300	783M	50.0	55.9	53.3

Table 5: Comparison of models trained for three epochs on the same data and models trained forone epoch. Accuracy is reported on the full Semantic-Syntactic data set.

Model	Vector	Training	Accuracy [%]			Training time
	Dimensionality	words			[days]	
			Semantic	Syntactic	Total	
3 epoch CBOW	300	783M	15.5	53.1	36.1	1
3 epoch Skip-gram	300	783M	50.0	55.9	53.3	3
1 epoch CBOW	300	783M	13.8	49.9	33.6	0.3
1 epoch CBOW	300	1.6B	16.1	52.6	36.1	0.6
1 epoch CBOW	600	783M	15.4	53.3	36.2	0.7
1 epoch Skip-gram	300	783M	45.6	52.2	49.2	1
1 epoch Skip-gram	300	1.6B	52.2	55.1	53.8	2
1 epoch Skip-gram	600	783M	56.7	54.5	55.5	2.5

Hyper parameters

- -size: vector dimension
- -window: context window size
- -sample: sub-sampling threshold
- -hs: whether using hierarchical softmax
- -negative: num of negative sample
- -min-count: pruning threshold
- –alpha: learning rate
- -cbow: whether using CBOW

Hyper parameter advices

- CBOW is faster while Skip-gram has better performance, especially for uncommon words
- Softmax is efficient and good for uncommon wor
- a. negative sampling is good for common words
- 4. sub-sampling leads to better performance and higher efficiency, sample between 1e-3 and 1e-5 is recommended.
- 5. vector size: the higher the better, but not often the case
- 6. window size: skip-gram: about 10, CBOW: about 5

Tricks

```
expTable = (real *)malloc((EXP_TABLE_SIZE + 1) * sizeof(real));
for (i = 0; i < EXP_TABLE_SIZE; i++) {
    expTable[i] = exp((i / (real)EXP_TABLE_SIZE * 2 - 1) * MAX_EXP); // Precompute the exp() table
    expTable[i] = expTable[i] / (expTable[i] + 1); // Precompute f(x) = x / (x + 1)
}</pre>
```

Tricks

```
// Returns hash value of a word
tint GetWordHash(char *word) {
   unsigned long long a, hash = 0;
   for (a = 0; a < strlen(word); a++) hash = hash * 257 + word[a];
   hash = hash % vocab_hash_size;
   return hash;
}
// Returns position of a word in the vocabulary; if the word is not found, returns -1
int SearchVocab(char *word) {
   unsigned int hash = GetWordHash(word);
   while (1) {
     if (vocab_hash[hash] == -1) return -1;
     if (!strcmp(word, vocab[vocab_hash[hash]].word)) return vocab_hash[hash];
     hash = (hash + 1) % vocab_hash_size;
   }
   return -1;
 <u>}</u>
```

0

Extensions

- phrase vector
- Paragraph Vector

Paragraph Vector

- bag-of-words: ignore word orders and word semantic
- various length
- application: text
 classification and
 sentiment analysis

Thanks!