

Abstract

what 1s word2vec?

previous work

architectures of Mikolov’ s
result and comparison

Hyper parameters and tricks

extensions

What 1s wordZ2vec?

s 1. continuous vector representations of
words

s 2. capture syntactic and semantic word
similarities

o 3. state—of=art performance ang HWIE it
efficiency

previous work

o ' ladearning representations by bagk:
propagating errors(Hinton, 1986)

o 2. NNLM(Bengio 2003)

o 3. RNNLM: time—delayed connections within
hidden layer, short term memory

PROJECTION OUTPUT

Architecture

Continuous
Bag—of—-Words
Model

INPUT PROJECTION OUTPUT

4] w(t-2)

Architecture R

Continuous e }L
Skip—gram NS
Model w(t+1)

‘] w(t+2)

Skip-gram

Basic Architecture

y T
exp (Vy, Vuw;

T
1
s) D logp(wiijlw) Erp(wolwn) =

v = I
=1 —c<j<e,j#0 zw:] eXp (vw le)

o 2. Represent input(vocabulary) and output (context)
word vector separately, 2%V vectors(V is dict size)

s 3. stochastic gradient ascent to maximize objective
function, time cost proportional to V

o

o

Efficient Architecture

hierarchical softmax

2. V-1 inner node and V word have separate
representation

3. Each word(leaf node) can be reached from the
root, average 4 (w) @< log ()

4. gradient formula derivation is key

8

hierarehical gaftmax

Computational efficient because of Huffman tree:
1. proportional to Log(V)

2. assigns short codes to the frequent words which results in fast
training

Explanation:

l. use binary classification to approximate multiple classification

2. 1nner node vector may have some semantic meaning

Negative Sampling

Replace with:

Pn (w) : U(w)3/4/Z)

motivation from NCE: good models differentiate data
from noise

prevent all the vectors from having the same value by
disallowing some (w, c¢) pair(in the Explanation paper,

10

o

o

o

sub—sampling

l. reason: frequent words have less information

2. diseard probability:

3. contribution:

faster training

better vector for uncommon words(widen the sliding window)

11

o

°

I¢

.

lraining process

read corpus and calculate each word’ s count

sort word array by word count (word index stored in hash

table), pruning uncommon words

O

Dy

construct Huffman tree

read a sub—sentence from corpus (sub—sampling)

sliding window(window size random) within a sub—sentence
hierarchical softmax

negative subsampling

Result and Comparison

Table 4: Comparison of publicly available word vectors on the Semantic-Syntactic Word Relation-
ship test set, and word vectors from our models. Full vocabularies are used.

Vector Training Accuracy [%]
Dimensionality | words

|| scmantic Total
50

Collobert-Weston NNLM 11.0
Turian NNLM . . 2.1
Turian NNLM . . 1.8
Mnih NNLM . . 5.8
Mnih NNLM . . 8.8
Mikolov RNNLM

Mikolov RNNLM

Huang NNLM

Our NNLM

Our NNLM

Our NNLM

CBOW

Skip-gram

Table 5: Comparison of models trained for three epochs on the same data and models trained for
one epoch. Accuracy is reported on the full Semantic-Syntactic data set.

Vector Training Accuracy [%] Training time
Dlmensmnahty words [days]

3 epoch Skip-gram
1 epoch CBOW
1 epoch CBOW
1 epoch CBOW
1 epoch Skip-gram

3 epoch CBOW ‘

1 epoch Skip-gram
1 epoch Skip-gram

Hyper parameters

s —size: vector dimension

o —window: context window size

s —sample: sub—sampling threshold

s —hs: whether using hierarchical softmax
s —negative: num of negative sample

o —min—count: pruning-threshold

o —alpha: learning rate

s —cbow: whether using CBOW

14

o

o

o

o

Hyper parameter
advices

1. CBOW 1is faster while Skip—gram has better performance, especially
for uncommon words

2. softmax is efficient and good for uncommon wor
3. negative sampling 1s good for common words

4. sub—sampling leads to better performance and higher efficiency,
sample between le—3 and le-b 1s recommended.

b, vector size: the higher thellbetr ter,. bt snoti Ol fen e "gase

6. window size: skip—gram: about 10, CBOW: about 5

Trieks

expTable = (real *)malloc((EXP_TABLE_SIZE + 1) * sizeof(real));
for (i1 = @; 1 < EXP_TABLE_SIZE; i++) {
expTable[1] = exp((1 / (real)EXP_TABLE_SIZE * 2 - 1) * MAX_EXP);
expTable[1] = expTable[1] / (expTable[1i] + 1);
¥

i, at d3io oo aWaVa

1) BT HE—, RHBEL CoF BERAHIIE—FELE L, LLFfFa, b, c
HILBE R0 1/2, 1/3, 1/6 B, LBAF, AZ¥msh 0, A¥mAl 1, F
6] 7 7308 1/2,(1/2+1/3),(1/2+1/3+1/6)

| a | b C |

2) PHERBIT A m B, 0 XN s, BRI EHESIBER 0, m XF A I A

B MR 1, 5 _ERaB— ks, IBAaE 0-m TR BEE T
XN A T
O S G O O S () S O O S O O N O O R

word2vec) FARCRS IR, W8 R A& BEER KA S SIELE,
1M A2 55 1] 401K power X 17 % IE B o

16

nt GetWordHash(char *word) {

unsigned long long a, hash = 0;

for (a = 0; a < strlen(word); a++) hash = hash * 257 + word[a];
hash = hash ¥ vocab_hash_size;

return hash;

/ Returns position of a word in the vocabulary; if the word is not found, returns -1
int SearchVocab(char *word) {
- unsigned int hash = GetWordHash(word);
-~ while (D) {

if (vocab_hash[hash] == -1) return -1;

if (!strcmp(word, vocab[vocab_hash[hash]].word)) return vocab_hash[hash];

hash = Chash + 1) % vocab_hash_size;

}

return -1;

¥

et

D

Paragraph Vector

bag—of—-words: ignore
word orders and word
semantic

various length

application: text
classification and
sentiment analysis

Classifier

Average/Concatenate

19

Paragraph +the
id

cat

sat

e
N :.? w.»-nﬂw
| e

