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Abstract

Low-frequency words place a major challenge for automatic
speech recognition (ASR). The probabilities of these words,
which are often important name entities, are generally under-
estimated by the language model (LM) due to their limited oc-
currences in the training data. Recently, we proposed a word-
pair approach to deal with the problem, which borrows infor-
mation of frequent words to enhance the probabilities of low-
frequency words. This paper presents an extension to the word-
pair method by involving multiple ‘predicting words’ to pro-
duce better estimation for low-frequency words. We also em-
ploy this approach to deal with out-of-language words in the
task of multi-lingual speech recognition.

Index Terms: speech recognition, language model, multilin-
gual

1. Introduction

The language model (LM) is an important module in automat-
ic speech recognition (ASR). The most well-known language
modelling approach is based upon word n-grams, which relies
on statistics of n-gram counts to predict the probability of a
word given its past n-1 words. In spite of the wide usage, the
n-gram LM possesses an obvious limitation in estimating prob-
abilities of words that are with low frequencies and the words
that are absent in the training data. For low-frequency word-
s, the probabilities tend to be under-estimated due to the lack
of occurrences of their n-grams in the training data; for words
that are absent in training, estimating the probabilities is simply
impossible. Ironically, these words are often important entity
names that should be emphasized in decoding, which means the
probability under-estimation for them is a serious problem for
ASR systems in practical usage.

A well-known approach to dealing with low-frequency and
absent words is various smoothing techniques such as back-
off [1] and discount [2, 3]. This approach allocates a small pro-
portion of probability mass to low-frequency and absent words
so that they are allowed to be recognized. However, the allo-
cated probabilities for these words are very small, which makes
it unlikely to be well recognized unless the acoustic evidence
is fairly strong. Besides, this approach does not support flex-
ible enhancement for words that are important for a particular
domain or application.

Another famous approach is to train an LM with some
structures that can be dynamically changed, e.g., the class-based
LM with classes that are adaptable online [4]. These dynamic
structures, however, need to be pre-defined and can not handle
words that are not in the structure. For example, words that are
not in the pre-defined classes cannot be handled by class-based

LMs. Additionally, involving such dynamic structures often re-
quires to modify the decoder, which is not ideal to our opinion.

Recently, we proposed a similar-pair approach to deal with
the problem [5]. The basic idea is to borrow some information
from high-frequency words to enhance low-frequency words.
More specifically, we seek for a high-frequency word that is
similar to the word to enhance, and then re-weight the proba-
bility of the low-frequency word by adding a proportion of the
probability of the high-frequency words to the the probability
of the low-frequency words. This approach has been implement
with the LM FST graph [6]. Compared to the traditional class-
based LM approach, the new approach is flexible to enhance
any words and does not need to change the decoder. It has been
shown that this approach can provide significant performance
gains for low-frequency words and words that are totally absent
in the training data.

This paper is a following work of [5]. We first present an
extension that allows multiple high-frequency words (‘indicat-
ing words’) to be used when enhancing a low-frequency word.
This extension helps to involve multi-source information in the
word enhancement, and is particular important for words with
multiple senses. Secondly, the similar-pair approach is applied
to deal with a particular low-frequency words: out-of-language
(OOL) words that are from another language but embedded in
utterances of the host language, for example English words ap-
pearing in Chinese utterances. These words are totally new for
the host language and no context information can be employed
to estimate the probabilities for them. The similar-pair approach
can deal with the situation, by assuming that words in differen-
t languages share the same semantic space and hence similar
pairs can essentially cross languages. The experimental results
in Section ?? demonstrated the capability of this approach in
dealing with OOL words.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses relevant works, and the similar-pair method is
described in section 3. The two new extensions are presented
in Section ??, which is followed by Section 5 where the exper-
iments are presented. Finally, the entire paper is concluded by
Section 6.

2. Related works

This work is related to dynamic language modeling that adds
new words and re-weighting word probabilities, particulary the
approaches that are based on FSTs. This section reviews some
typical techniques of this approach, and primarily focuses on
the class-based LM that deals with dynamic vocabularies and
low-frequency words.

The class-based language modeling [7] is an approach that
clusters similar words into classes and the probabilities of word-



s in each class are re-distributed, for instance according to their
unigram statistics. Typically, the class-based LM delivers bet-
ter representations than the word-based LM for low-frequency
words [4], since the class-based structure factorizes probabil-
ities of low-frequency words into class probabilities and class
member probabilities, and so increases robustness of the prob-
ability estimation. Moreover, new words can be easily added
into classes with the class-based LM, leading to a dynamic vo-
cabulary. Additionally, [8] and [9] introduced two techniques
to build both the class-based LMs and the class words into F-
ST graphs and embed class FSTs into the class-based LM FST.
This embedding can be done on-the-fly, thus offers a flexible dy-
namic decoding that supports instant introduction of new words.
Similar approaches have been proposed in [10, 11, 12], where
various dynamic embedding methods are introduced, and the
classes are extended to complex grammars.

The work is an extension of the similar-pair method pro-
posed in [5]. In this approach, the probabilities of low-
frequency words are enhanced and new words are supported
by adding new FST transitions, both referring to the transition-
s of the similar and high-frequency words. Compared to the
other approaches mentioned above, this method is more flexi-
ble, which supports any words instead of words limited in some
pre-defined classes.

The extensions we made in this paper for the work in [5] are
two-fold: firstly, the similar-pair algorithm is extended to allow
multiple predicting words, which enables multiple information
engaged and thus better enhancement; second, the similar-pair
approach is employed to deal with OOL words, which demon-
strated that similar pairs can be cross-lingual.

3. Word enhancement by similar-pairs

In this section we first give a brief introduction to the FST-based
ASR architecture, and then present the similar pair method im-
plemented on FSTs.

3.1. Finite state transducer

A Finite State Transducer (FST) essentially is a Finite State Au-
tomaton (FSA) which produces output as well as reading input.
It is represented as a graph where every node indicates a state
and every arc that links two nodes is assigned an input and an
output symbol. Each transition and each terminated state is la-
beled with a weight. An FST example is depicted in Fig 1.
In this example, the initial state is state 0, and the final state
is state 2. A weight 3.5 has been assigned to the final state.
Let (s,t,4 : o/w) denotes a transition, where s and ¢ are the
entry and exiting states respectively, and ¢ is the input symbol
and o is the output symbol, and w is the associated transition
weight. From the initial state O to state 1, there are two tran-
sitions (0,1,a:x/0.5) and (0,1,b:y/1.5). From the state 1 to the
final state 2, there is only one transition (1,2,c:z/2.5). An FST
can accept a sequence of input symbols and generate a sequence
of corresponding output symbols. For instance in Fig. 1, given
an input string ‘ac’, the transition (0,1,a:x/0.5) accepts the first
character ‘a’ and generates an output ‘x’ with weight 0.5, and
the transition (1,2,c:z/2.5) accepts the second character ‘c’ and
generates an output ‘z” with weight 2.5. The weight of the tran-
sition path is computed as the sum of the weights associated to
each transition in the path, plus the weight associated with the
finally state. In our example, the weight of the transition path
that accepts ‘ac’ is 6.5.

Figure 1: An FST example.

3.2. FST-based speech recognition

Most of current large-vocabulary speech recognition systems
are based on statistical models, such as hidden Markov models
(HMMs), lexicons, decision trees and n-gram LMs. All these
models can be converted into the FST models. For an FST, the
correlation between the input and output symbols will repre-
sent the mapping from a low-level sequence (e.g., phones) to
a high-level sequence (e.g., words), and the weights will en-
code the probability distribution of the mapping. More impor-
tantly, FSTs that represent different levels of statistical model-
s can be composed together to form a unified mapping func-
tion that associates primary inputs to high-level outputs. The
composed FST can be further optimized by standard FST op-
erations, including determinization, minimization and weight
pushing. This produces very compact and efficient graphs that
represent the knowledge of all the statistical models involved in
the composition. In speech recognition, the composition can be
used to produce a very efficient graph that maps HMM states to
word sequences. The graph building process can be represented
as follows:

HCLG = min(det(H oCo Lo@)) (1)

where H, C, L and G represent the HMM, the decision tree, the
lexicon and the LM (or grammar in grammar-based recognition)
respectively, and o, ‘det’ and ‘min’ denote the FST operations
of composition, determinization and minimization respectively.

3.3. Low-frequency word enhancement with similar pairs

The similar pairs method is based on the FST architecture. In
order to enhance low-frequency words, and for conducting the
enhancement on the LM FST, or the G graph, a list of manually
defined similar pairs are provided with corresponding frequen-
cy information obtained from training data. The low-frequency
words are selected to be enhanced and the high-frequency words
are chosen to provide the enhancement information. Each sim-
ilar pair in the list includes one high-frequency word and some
low-frequency words. Given a set of similar words, the low-
frequency words are enhanced by looking at the information
of the high-frequency word, including its transitions in the G
graph and the associated weights. The high-frequency word-
s are preserved since they have been well represented by the
n-gram model already.

4. The Method

The extension of similar pairs method are introduced in this
section. Based upon the similar pairs method, the probabili-
ty of low-frequency or new words are enhanced by looking at
the information of high frequency words. Given a set of words
W = {x1, 2, ..., m } to be enhanced, for each word z; € W,
a set of words S; = {y1,¥2, ..., yn} that are similar to x; is
manually selected from the training data. The similarity can be
defined in terms of either syntactic roles or semantic meanings.
We assume that, for each y; € S, if there exist an n-gram of y;



in the training corpora, the corresponding n-gram of x; should
also have a relative higher probability of appearance. As the
probabilities are represented as the weights in the G graph in
FST, according to this assumption, the new weight (probability)
of x; can be updated by the equation (2).

fas

wy; + In( Tt T )+ 0 2)
where 6 is a parameter that tunes the enhancement scale. Note
that according to (2), a larger f5, leads to a higher w,,, which
means that a more frequent word (still low-frequency) is as-
signed a larger weights after enhancement, and so the rank of
the low-frequency words in probabilities is preserved. Howev-
er, if the word z; is a new word, the logarithm term can be ig-
nored. Then the FST can be updated with the new weight. Let
A(yj;) denote the set of all the transitions of the word y;. A(y;)
can be retrieved by searching through the G graph. For each
transition (s, ¢,y; : y;/wy, € A(y;) in the G graph, check if a
transition (s, ¢, x; : ;/ws,) exist in G for z;. If it exists, the
wight w,, will be adjusted to a new weight wy,,, otherwise, a
parallel arc of transition (s, ¢, z; : @;/w,) will be added. The
new weight w;i can be calculated by the equation (2).

An example of the enhancement process is illustrated in
Fig. 2, where Fig. 2(a) shows the G graph before the enhance-
ment, and Fig. 2(b) shows the G graph after the enhancement.
Note that ‘a’ is the high-frequency word, and (a,c) forms a sim-
ilar pair. A new transition has been added in Fig. 2(b) for the
low-frequency word c.

G aall ‘ bib/2 @

(a)

. aall . ) .

(b)

Wy

i

Figure 2: An example of a low-frequency word enhancement
based on similar pairs. (a,c) is a similar pair, where ‘a’ is the
high-frequency word, and ‘c’ is a low-frequency word. A new
transition is added in (b).

Comparing with the original similar pairs method, in this
extension method each low-frequency or new words x; will be
enhanced by multiple high-frequency words rather than only
one. This will increase the search space of the low-frequency
word in the G graph. Since the corresponding high-frequency
referral words in S; are selected to be similar to x;, the path-
s of z; which are added to G are most likely to be correct in
grammar and reasonable in meaning.

In addition, multiple referral words provide more nearly
complete information especially in multi-lingual situation, s-
ince the one-to-one correspondence are merely existed in few
occasions. The usage of a word in one language could have
multiple variants in another language. It has been verified by
our experiment results in the section 5.

5. Experiment

The bilingual ASR tasks in the telecom domain is chosen to
evaluate the proposed approach. We first introduce the exper-

imental configurations, and then present the performance with
the proposed low-frequency English words enhancement based
on similar pairs.

5.1. Database

The ASR task we choose aims to transcribe conversations
recorded from online service calls. The domain is the tele-
com service and the language is in Chinese or English. To
train the acoustic model (AM), we manually transcribed 1400
hours of online speech recording from a large call center service
provider. To train the Chinese LM, text data were collected, in-
cluding the transcription of the AM training speech and some
logs of web-based customer service systems in the domain of
telecom service.

In order to evaluate the performance of the similar-pair
method, we selected 22 similar pairs. A similar pair contain-
s 1~5 high-frequency Chinese words and 1~4 new English
words. A ‘FOREIGN’ test set was deliberately designed to test
the enhancement with these similar pairs, which consists of 42
sentences from online speech recording.. For each transcrip-
tion, some new English words appears in the similar pairs is
involved.

Additionally, to test the generalizability of the proposed
method, a ‘GENERAL’ test set that involves 2608 utterances
is selected. Each utterance in this set contains words in var-
ious frequencies and so it can be used to examine if the pro-
posed method impacts general performance of ASR systems at
the time of enhancing low-frequency and new words.

5.2. Acoustic model training

The ASR system is based on the state-of-the-art HMM-DNN a-
coustic modeling approach, which represents the dynamic prop-
erties of speech signals using the hidden Markov model (HM-
M), and represents the state-dependent signal distribution by the
deep neural network (DNN) model. The feature used is the 40-
dimensional FBank power spectra. A 11-frame splice window
is used to concatenate neighboring frames to capture long tem-
poral dependency of speech signals. The linear discriminative
analysis (LDA) is applied to reduce the dimension of the con-
catenated feature to 200.

The Kaldi toolkit [13] is used to train the HMM and DNN
models. The training process largely follows the WSJ s5 GPU
recipe published with Kaldi. Specifically, a pre-DNN system
is first constructed based on Gaussian mixture models (GMM),
and this system is then used to produce phone alignments of the
training data. The alignments are employed to train the DNN-
based system.

5.3. Language model training

When training the Chinese LM, the training text is first nor-
malized, including removing unrecognized characters, unifying
different encoding schemes, normalizing the spelling form of
numbers and letters. After the normalization, the training text is
segmented into word sequences. A word segmentation tool pro-
vided by Google is used in this study. We select 150,000 words
as the LM lexicon, according to the word frequency in the seg-
mented training text. The SRILM toolkit ! is then used to train
a 3-gram LM, which is smoothed by Kneser-Ney discounting.
The Kaldi toolkit is used to convert n-gram LMs to G graphs,
and the openFST toolkit” is used to manipulate FSTs.

Uhttp://www.speech.sri.com/projects/srilm/
Zhttp://www.openfst.org



5.4. Experiment result and analysis

The ASR performance in terms of the word error rate (WER) is
presented in Table 1, Table 2 and Table 3. We report the results
on two test sets: ‘GENERAL’ and ‘FOREIGN’, and the results
with different values of the enhancement scale 6 and differen-
t amounts of high-frequency Chinese words are presented. It
can be seen that with the similar-pair-based enhancement, the
ASR performance on utterances with new English words is sig-
nificantly improved. In addition, compared with the approach
of one high-frequency Chinese word, the approach of multiple
high-frequency Chinese words has better results. Interesting-
ly, the enhancement on these infrequent words does not cause
degradation on the other Chinese words in ‘GENERAL’ test set.
Moreover, the performance on the ‘GENERAL’ test set nearly
remains unchanged, which indicates that the proposed approach
does not impact general performance of ASR systems, and thus
is safe to employ. For a more clear presentation, the trends of
WERS on the two test sets with different values of 6 and differ-
ent amounts of high-frequency Chinese words are presented in
Fig. 3.

WERY%
P ChNum | 2 3 4 5
= 6695 | 62.68 | 604 | 60.68 | 61.82
2 6439 | 63.53 | 61.54 | 61.54 | 62.68
0 62.11 | 64.96 | 66.95 | 66.95 | 65.53
2 62.96 | 66.95 | 65.53 | 6553 | 65.53
4 698 | 735 | 7749 | 7749 | 77.78

WER%

0 | GENERAL | FOREIGN
Baseline | - 33.75 77.64
+ SP -4 33.76 66.95

-2 33.76 64.39

0 33.77 62.11

2 33.8 62.96

4 33.83 69.8

Table 1: WERs with and without the similar-pair-based en-

hancement.

‘SP’ stands for enhancement with similar pairs,

which use one high-frequency Chinese word. € is the enhance-

ment scale in equation(2).

Table 3: WERs with different amounts of high-frequency Chi-
nese words on ‘FOREIGN’ test set. 6 is the enhancement scale
in equation(2), ChNum is the amount of high-frequency Chi-
nese words.
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Figure 3: WERSs on the two test sets with increasing amounts of
ChNwum. The value of 6 is -4

ferent amounts of high-frequency Chinese words are presented
in Fig. 3.

WERY%
P ChNum | 2 3 4 5
= 3376 | 33.77 | 33.77 | 33.78 | 33.78
2 3376 | 33.77 | 33.77 | 33.77 | 33.78
0 3377 | 33.79 | 33.79 | 33.78 | 33.79
2 338 | 33.83 | 33.82 | 33.81 | 33.82
7 33.83 | 33.96 | 33.96 | 33.97 | 33.96

NEER%

¢ | CHINESE | ENGLISH
Baseline | - 46.85 100
+ SP -4 48.65 72.09

-2 50.45 48.84

0 50.45 32.56

2 54.05 0

4 59.46 0

Table 2: WERs with different amounts of high-frequency Chi-
nese words on ‘GENERAL test set. 6 is the enhancement scale
in equation(2), ChNum is the amount of high-frequency Chi-
nese words.

To further examine the gains offered by the proposed ap-
proach, the name entity error rate (NEER) is used. In contrast
to the WER that measures the accuracy on all words, the NEER
evaluates the accuracy on focused words, i.e., the words to en-
hance (the new English words) and the other Chinese words in
‘GENERAL test set. The results are presented in Table 4, Ta-
ble 5 and Table 6. It can be seen that the similar-pair-based
enhancement does deliver a much better accuracy on the new
English words. Importantly, the improvement on the infrequent
words does not impact the performance on the other Chinese
words in ‘GENERAL’ test set, which confirms the effective-
ness and safety of the proposed method. Again, the trends of
NEERSs on the two test sets with different values of ¢ and dif-

Table 4: NEERs with and without the similar-pair-based en-
hancement. ‘SP’ stands for enhancement with similar pairs,
which use one high-frequency Chinese word. 6 is the enhance-
ment scale in equation(2)

6. Conclusion

In this paper, we proposed a similar-pair-based approach to en-
hance speech recognition accuracies on low-frequency and new
words. This enhancement is obtained by exploiting the infor-
mation of high-frequency words that are similar to the target
words. The experimental results demonstrated that the proposed
method can significantly improve performance of speech recog-
nition on low-frequency and new words and does not impact the
ASR performance in general. This lends this method to quick
domain-specific adaptation where low-frequency words need to
be enhanced and new words need to be supported. Future work
involves enhancing low-frequency words using multiple simi-



NEER %
) ChNum 1 ) 3 4 5
-4 48.65 | 49.55 | 48.65 | 48.65 | 48.65
-2 50.45 | 49.55 | 51.35 | 51.35 | 51.35
0 50.45 | 51.35 | 56.76 | 56.76 | 56.76
2 54.05 | 58.56 | 57.66 | 57.66 | 58.56
4 59.46 | 63.96 | 63.06 | 62.16 | 62.16

Table 5: NEERs with different amounts of high-frequency Chi-
nese words on Chinese words of ‘FOREIGN” test set. 6 is the
enhancement scale in equation(2), ChNum is the amount of

high-frequency Chinese words.

NEER %
, ChNum | ) 3 4 5
-4 72.09 | 58.13 | 53.49 | 51.16 | 48.84
-2 48.84 | 30.23 | 34.88 | 32.56 | 32.56
0 32.56 | 2093 | 13.95 | 13.95 9.3
2 0 0 0 0 0
4 0 0 0 0 0

Table 6: NEERs with different amounts of high-frequency Chi-
nese words on low-frequency English words in ‘FOREIGN’ test
set. 6 is the enhancement scale in equation(2), ChNum is the
amount of high-frequency Chinese words.

lar words, and combining this method with other dynamic LM

approaches such as the class-based LM.
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