
Embedding grammar to N-gram Language Model Based on Weighted
Finite-State Transducer

Author 1
XYZ Company

111 Anywhere Street
Mytown, NY 10000, USA
author1@xyz.org

Author 2
ABC University
900 Main Street

Ourcity, PQ, Canada A1A 1T2
author2@abc.ca

Abstract

Building a language model usually re-
quires massive training corpus, which labor-
consuming and time-costing. And it is im-
practical to construct a language model that
covers all the spoken language, especially for
some special domains. In this paper, we com-
bine the class-based and word-based language
model based on weighted finite-state trans-
ducer using our grammar embedding method,
and the combination is controlled by a merge
weight. The class we used in our work is a
type of named entity, such as address name,
person name etc. We test our method on a
domain-specific test set and our approach can
dramatically improve the recognition rate of
the low-frequency or unseen words. In addi-
tion, we explore the relation between the opti-
mal merge weight and the experiment settings.

1 Introduction
The n-gram language model (LM) building is one
of the key techniques in Automatic Speech Recog-
nition (ASR) for providing a statistical analysis in
decoding results prediction. Traditionally, a LM is
trained on large corpora by counting the appearance
of the n-grams and estimating their probability dis-
tributions. It is then converted into a state transi-
tion graph using Weighted Finite-State Transducer
(WFST) technique and finally composed with other
components of the speech recogniser. However,
sometimes it is impractical to construct a LM that
covers all the spoken language, especially for some
special domains. For example, given a large vocab-
ulary such as a long list of named entity (NE), for
the names that never occurs in the training corpus,
it is almost impossible to recognise them from the
word-based LM. Moreover, when a complex gram-
mar pattern like phone number series is required, it
is very hard to find a corpus that contains every pos-
sible phone number. In short, a lack of scalability

is the limitation of the traditional word-based LMs
in ASR, and it should not be solved by only adding
more training data.

Therefore, in order to train a extensible LM, one
solution is to use the class-based n-gram model. It
is especially useful when the model is expected to
contain a variety of entity names from the same type
of class, such as person names or address names.
More importantly, the scalability of class-based LM
allows us adding more new entity names into the
class cluster or changing grammar rules without re-
building the main LM. In our work, we denote each
class as a tag, such as ’<address>’ for the class
of address names. Each class is described in some
specific grammar patterns, such XML and JSpeech
Grammar Format (JSGF)1. And we can use the tags
to represent not only some word sequences but also
grammar patterns with more complicated structures.
We can combine the class-based LM and the gram-
mar patterns together based on weighted finite-state
transducer (WFST) using our grammar embedding
method. The composite WFST graph is called a tag
LM. By doing this, this tag LM will take the role of a
grammar component in the speech recognition sys-
tem, such as the grammar component G in KALDI’s
HCLG framework (Mohri et al., 2008; Povey et al.,
2011).

In this paper we first present the method for build-
ing the WFST graphs from the training data and the
JSGF pattern, then propose a embedding technique
for merging the grammar patterns into the main LM
graph guiding by a merge weight. We explore the
relation between the merging weight and the experi-
ment settings and discuss how it effects the recogni-
tion process on words or word sequences specified
by the grammar patterns by evaluating on a domain-
specific test set. The result shows that our approach
can dramatically improve the recognition rate of the
low-frequency or unseen words(sequences). We also

1http://www.w3.org/TR/jsgf/

developed an open source toolkit for the technical
implementation2.

The remainder of this paper is structured as fol-
lows. Section 2 discusses relevant works from class-
based LM training to FST implementation in ASR.
Section 3 presents our grammar embedding method.
Section 4 empirically evaluates the performance of
our work and Section 5 concludes.

2 Related Work
The performance of the class-based LM has been
studied within literature of language model training
techniques and applications. Typically, the class-
based LM has a better outcome than the word-based
LM in the cases of large vocabulary (Samuelsson
and Reichl, 1999), lacking in training data (Ward
and Issar, 1996) or word sequence patterns in-
volved (Georges et al., 2013). By using the class-
based LM, there are many researches show decrease
in perplexity (Ward and Issar, 1996; Samuelsson and
Reichl, 1999) and word-error rates (WER) (Georges
et al., 2013).

(Schalkwyk et al., 2003) and (Georges et al.,
2013) introduced two techniques for decoding the
embedded graph dynamically during runtime. They
are both done on-the-fly. (Schalkwyk et al., 2003)
preposed a method for embedding the dynamic
grammars into its CPLG framework. which is a
WFST model that has been composed from the
language model (G), lexicon (L), phone (P), and
context-dependency (C). When a tag of class is en-
countered during decoding process, the correspond-
ing dynamic grammar is called recursively. (Georges
et al., 2013) took a similar way to embedd the gram-
mar graphs, where the grammar graphs are searched
when the tag is reached. However, it is distinguished
from (Schalkwyk et al., 2003) by embedding the
grammar graphs to the language model G. The rea-
son why both (Schalkwyk et al., 2003) and (Georges
et al., 2013) prefer on-the-fly method to full expan-
sion is that fully expanding the grammars may cause
the resultant graph too large. However, without full
expansion, the optimisation technique (e.g determin-
isation, minimisation, etc.) cannot be applied to the
graph unless implementing extra structures. There-
fore the recursive transition networks and the nesting
technique are implemented respectively.

In short, using class-based LM can improve the
performance on speech recognition. However, it re-
quires full expansion on the decoding framework in
order to the determinisation. which is very costly.
Otherwise, one have to exploit additional techniques
to perform the decoding process.

In our research, we propose a technique that links
the grammars to the language model G before G is

2http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php

composed with other components(H, C and L), with
additional disambiguated nodes and approximation
method, the graph can be determinised and avail-
able for further optimisation. More details will be
discussed in Section 3.

3 Methodology
Each class if defined by a rule in a grammar file.
Later we use the low-frequency items in all the
classes to tag the training corpus, that is substitut-
ing the word strings in trainning corpus with a class
token. A n-gram language model is generated for
class tokens using the tagged training corpus. Com-
piling the n-gram language model and the grammar
to two WFSTs and merging the WFSTs to a inte-
grated WFST parameterized by the merge weight.
After the merging procedure, the integrated WFST
serves as a component(G) of constructing HCLG.
The procedure of our approach is as follow:

1. build a grammar that defines all the classes.

2. tag the training corpus and train a class based
n-gram language model.

3. merge class based n-gram language model and
the grammar to a intergrated WFST.

3.1 Building Grammar
We define the classes as different types of NE, that
is each type of NE is a class. The items in each class
are a cluster of NEs belonging to the same type and
each cluster of items is predefined in a correspond-
ing NE list. Then each class in specified in a gram-
mar file as one rule. The format of the grammar we
used is JSGF:

grammar NE grammar;

public <LOCATION> = LOC1 | LOC2 | LOC3;

public <PERSON> = PER1 | PER2 | PER3;

public <ORGANIZATION> = ORG1 | ORG2 |
ORG3;

In the above example grammar, three classes (LO-
CATION, PERSON and ORGANIZATION) are de-
fined. The LOCATION class contains three items
(LOC1, LOC2 and LOC3), each item can be a sin-
gle word or word sequences.

3.2 Tagging and Training Class-based LM
We used our parser to tag the training corpus refer-
ring to the NE lists. The parser replace the word
strings with the class token. We then generate an
ARPA n-gram LM using SRLM toolkit (Stolcke and
others, 2002). There is a special implementation

consideration. We should filter the NE lists since
there are some high-frequency NE in the lists. High-
frequency words can be trained sufficiently using
word-based n-gram LM and there is no need to in-
corporate them in the class cluster. If high-frequency
words are reserved and there is no proper probability
assignment in the grammar, the recognition rate of
high-frequency will deteriorate. So our parser will
count the frequencies of each NE and abandon the
high-frequency NEs, and the grammar should be al-
tered correspondingly. As a result, we use the fil-
tered low-frequency NEs to tag the corpus and to
build the grammar.

3.3 Grammar Embedding Method
We first convert the JSGF file to FSG using sphinx
toolit3. Then we use OpenFST toolkit4 to compile
the FSG to a grammar WFST. Figure 1 illustrates a
simple grammar WFST. A class-based LM WFST is
generated by convert the ARPA LM created in sec-
tion 3.2 to WFST using KALDI (Povey et al., 2011).
Figure 2 exemplifies a class-based LM WFST. The
integrated LM WFST is presented in Figure 3.

0

1Paris:Paris/1.0985

2
Las:Las/1.0985

3

London:London/1.0985
4

<eps>:<eps>

5
Vegas:Vegas

<eps>:<eps>

<eps>:<eps>

Figure 1: Grammar WFST

0

1like:like/2.0015

2

best:best/3.3081

4
<address>:<address>/0.2231

5
<address>:<address>/0.9079

3

awfully:awfully/0.4055

hotel:hotel/1.7638

Figure 2: Class-based LM WFST

0

1like:like/2.0015

2

best:best/3.3081
6

TAG0:<eps>/0.2231

TAG1:<eps>/0.9079

7Paris:Paris

8
Las:Las

9

London:London

3

4 awfully:awfully/0.4055

5

hotel:hotel/1.763810

#0:<eps>

11
Vegas:Vegas

#0:<eps>

TAG0:<eps>

TAG1:<eps>
#0:<eps>

Figure 3: Integrated LM WFST

In the grammar WFST, the input or output word
(sequence) of each path from the entrance sate 0 to
the exit state 4 corresponds to an item of a class
(e.g. <address>) in JSGF. And the weights on all
the transitions leaving the entrance state 0 equal.
Strictly, these weights should be distributed accord-
ing to the the n-grams probability of each item.
Since we tag the training corpus with low-frequency

3http://www.speech.cs.cmu.edu/sphinx
4http://www.openfst.org

items, their probabilities vary slightly. So equal
weight is approximate but reasonable.

In the class-based LM WFST, there are two word
seqences each contains a tag <address>. We embed
Figure 1 into Figure 2 and Figure 3 is obtained. We
do not replace each tag in Figure 2 with the gram-
mar WFST. But all the tag in Figure 2 share one
grammar WFST. We choose a grammar graph shar-
ing method and give up the full expansion method
because full expansion will give rise to a very large
resultant WFST, which is very difficulte to handle.
The specific precedure is presented in Algorithm 1.

Algorithm 1 Grammar Embeding
set i = 0
for each transition t = (p[t], < address >,<
address >,w[t], n[t]) in Figure 2
repeat

connect p[t] with entr[g] and generate a new
transition tt = (p[t], TAGi,< eps >,w[t] ∗
factor, entr[g])
connect exit[g] with n[t] and generate a new
transition ttt = (exit[g], TAGi,< eps >
, 0, n[t])
set i = i+ 1

until Done

In Algorithm 1, entr[g] denotes the entrance state
in Figure 1 while exit[g] denotes the exit state in
Figure 1. Additionally, factor denotes the merge
weight, which controls how easily the decoder steps
into the grammar WFST. The smaller merge weight
is, the more likely decoder steps into the grammar
WFST, hence more likely to decode the words (se-
quences) in JSGF. In the previous illustration, the
merge weight is 1. So the weight from state 1 to 6 in
Figure 3 is same with the weight from state 1 to 4.
They are both 0.2231.

The input label ’TAGi’ is added on the generated
transitions to guarantee the integrated LM WFST is
determinizable. It utilizes the twin property (Mohri
et al., 2008) of WFST.

4 Experiment
In our experiment, we use one type of NE (address
name) and one corresponding address list. The items
in the address list are treated as one class while other
words are defined as individual classes as them-
selves. We execute the work flow described in sec-
tion 3 and get a HCLG WFST and then evaluate the
it on a test set created by ourselves.

4.1 Experiment Setup
In order to evaluate the perfomance of our method,
we construct a test set. It contains 12 person’s record
of total 120 sentences. Each sentence contains a

address name. The preceding 30 sentences have
high-frequency address name in each sentence, and
the middle 40 sentence have low-frequency address
name which is listed in the JSGF grammar file in
each sentence, while the posterior 50 sentence have
address name that is unseen in corpus but added to
the grammar. We add 10 unseen address names to
the grammar, and each unseen address name have 5
test sentences. We want to see whether our method
can help us recognize the low-frequency address
names and the unseen address names on condition
that don’t influence the recognition of other words.

The training corpus we used has a total size of
64MB and consists of about 1.4 million sentences
and 11.5 million words. Then we use it to train a
5-gram language model. The speech database we
used contains 1400 hours of speech data. The 40-
dimensional Fbank feature was used in DNN train-
ing and recognition. The lexicon we used has 150K
words.

4.2 Baseline
We set up a baseline experiment to compare with our
method. We use the training corpus to train a word
based 5-gram language model. Using this language
model to construct HCLG and testing on the test set.
The result is reported in 1.

WER 30 ER 40 ER 50 ER
20.66 6 16 32

Table 1: Result of baseline. 30 ER, 40 ER and 50 ER
means the error number of 30 high-frequency address
names sentences, 40 low-frequency address names sen-
tences and 50 unseen address name sentences

In the baseline experiment, the word error-rate is
20.66%. There are 6 errors in recognizing the high-
frequency address names, 16 errors in recognizing
the low-frequency address names and 32 errors in
recognizing the unseen address names. Note that
there are 18 correct case when recognizing the un-
seen address name. The reason for this result is that
the grammar contains 2 long address names. Al-
though the long address names don’t appear in train-
ing corpus, but each single word composing the long
address names does. The decoder will recognize the
long address names by backing off to unigram.

4.3 Tag LM
We conduct 3 experiments to show our method
works and to find the relationship between the opti-
mal merge weight and the number of address names
in the grammar.

In experiment 1, we extract 490 low-frequency
address names that appear in the training corpus.
We use these 490 address names to tag the corpus,
and there are total 1369 sentences that matches the

address names. Then we combine the 490 low-
frequency and 10 unseen address names and the
grammar is determined. Using our method to build
several class based HCLGs with different merge
weight. Table 2 presents the result. From the re-
sult we can see that our method can largely improve
the recognition rate of low-frequency and unseen ad-
dress names, especially when the merge weight is
small. But when the merge weight is smaller than
a threshold, the WER is high. The explanation for
this phenomenon is that when the merge weight is
small, it’s more likely for the decoder to recognize
ordinary words as address names in the grammar.
When the merge weight is high, the decoder is less
likely to recognize the address names. One extreme
is that when the merge weight is very big, the re-
sult of our method is same with the baseline. There
is a trade-off between the recogniztion rate of the
low-frequency or unseen address names and other
ordinary words. In experiment 1, the optimal merge
weight is 0.6. The criterion to judge whether the
merge weight is good is that 40 ER and 50 ER is
small on condition that 30 ER is not higher than
baseline. Low 30 ER gurantees the recognition rate
of ordinary words is not obviously influenced.

merge weight WER 30 ER 40 ER 50 ER
0.1 16.72 8 3 5
0.3 15.42 7 3 5
0.5 15.40 6 4 7
0.6 15.28 6 7 6
0.7 15.28 6 8 7
0.8 15.38 6 7 9
1.0 15.98 6 8 12
2.0 19.08 6 14 23

Table 2: Result of experiment 1. Grammar size: 500, tag
sentence number: 1369

4.4 Optimal Merge Weight Exploration
In order to find the relation between the optimal
merge weight and some expriment settings, we con-
duct experiment 2 and experiment 3.

The grammar of experiment 2 is same with ex-
periment 1. But we use 100 low-frequency ad-
dress names to tag the training corpus, and there are
165 sentences in the corpus that match the address
names. The only difference between experiment 2
and experiment 1 is the number of tag sentences in
corpus. The result of experiment 2 is presented in
Table 3.

Comparing experiment 2 with experiment 1, we
can find that when less tag sentences in the training
corpus, the optimal merge weight tends to smaller.
This is because smaller number of tag sentences re-
sults in lower probibility of the n-grams containing

merge weight WER 30 ER 40 ER 50 ER
0.01 17.57 10 4 7
0.03 17.25 8 4 7
0.05 16.84 7 4 7
0.08 16.59 6 5 8
0.1 16.50 6 5 9

0.15 16.76 6 6 11

Table 3: Result of experiment 2. Grammar size: 500, tag
sentences number: 165

the tag. And it’s less likely for the decoder to step
into the grammar WFST. From the WFST aspect, the
weights of the transitions that output tag in class-
based LM WFST is larger correspondingly. Obvi-
ously, smaller merge weight can compensate less tag
sentences.

In experiment 3, we use 490 low-frequency ad-
dress names to tag the training corpus, resulting in
1369 tag sentences. But we use a different gram-
mar with 1280 address names, 500 address names
are from the grammar in experiment 1 and remain-
ing 780 address names are unseen in corpus. Table 4
shows the result.

merge weight WER 30 ER 40 ER 50 ER
0.1 17.42 8 3 8
0.3 15.74 7 3 6
0.5 15.20 6 4 7
0.6 15.11 6 6 6
0.7 15.52 6 8 7
0.8 15.30 6 8 8
1.0 15.69 6 10 8
1.5 17.37 6 12 15

Table 4: Result of experiment 3. Grammar size: 1280,
tag sentence number: 1369

Comparing experiment 3 with expriment 1, we
can find that the number of address names in the
grammar file don’t influence the optimal merge
weight obviously. This is because the address name
number only influences the size of the grammar
WFST but not the transition weight before steping
into the small graph.

5 Conclusions
In this paper, we proposed a method for combin-
ing the class-based and word-based language model
based on WFST, and the combination is controlled
by a merge weight. Experiments shows that our
approach can dramatically improve the recognition
rate of the low-frequency or unseen words. In addi-
tion, we find the relation between the optimal merge
weight and the experiment settings.

References
Munir Georges, Stephan Kanthak, and Dietrich Klakow.

2013. Transducer-based speech recognition with dy-
namic language models. In INTERSPEECH, pages
642–646. Citeseer.

Mehryar Mohri, Fernando Pereira, and Michael Riley.
2008. Speech recognition with weighted finite-state
transducers. In Springer Handbook of Speech Process-
ing, pages 559–584. Springer.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Han-
nemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,
Jan Silovsky, Georg Stemmer, and Karel Vesely. 2011.
The kaldi speech recognition toolkit. In IEEE 2011
Workshop on Automatic Speech Recognition and Un-
derstanding. IEEE Signal Processing Society, Decem-
ber. IEEE Catalog No.: CFP11SRW-USB.

Christer Samuelsson and Wolfgang Reichl. 1999.
A class-based language model for large-vocabulary
speech recognition extracted from part-of-speech
statistics. In Acoustics, Speech, and Signal Pro-
cessing, 1999. Proceedings., 1999 IEEE International
Conference on, volume 1, pages 537–540. IEEE.

Johan Schalkwyk, I Lee Hetherington, and Ezra Story.
2003. Speech recognition with dynamic grammars us-
ing finite-state transducers. In INTERSPEECH.

Andreas Stolcke et al. 2002. Srilm-an extensible lan-
guage modeling toolkit. In INTERSPEECH.

Wayne Ward and Sunil Issar. 1996. A class based
language model for speech recognition. In Acous-
tics, Speech, and Signal Processing, 1996. ICASSP-96.
Conference Proceedings., 1996 IEEE International
Conference on, volume 1, pages 416–418. IEEE.

