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Abstract

Short utterance speaker recognition (SUSR) is highly challenging due to the
limited enrollment and/or test data. We argue that the difficulty can be largely
attributed to the mismatched prior distributions of the speech data used to train
the universal background model (UBM) and those for enrollment and test. This
paper presents a novel solution that distributes speech signals into a multitude of
acoustic subregions that are defined by speech units, and models speakers within
the subregions. To avoid data sparsity, a data-driven approach is proposed to
cluster speech units into speech unit classes, based on which robust subregion
models can be constructed. Further more, we propose a model synthesis
approach based on maximum likelihood linear regression (MLLR) to deal with
no-data speech unit classes.

The experiments were conducted on a publicly available database SUD12. The
results demonstrated that on a text-independent speaker recognition task where
the test utterances are as short as 2 seconds, the proposed subregion modeling
offered a 23.64% relative reduction in equal error rate (EER), compared with the
standard GMM-UBM baseline. In addition, with the model synthesis approach,
the performance can be greatly improved in scenarios where no enrollment data
are available for some speech unit classes.

Keywords: Short Utterance; Speaker Recognition; Subregion Model; Model
Synthesis

1 Introduction

Speaker recognition (also named as speaker verification) aims to verify claimed
identities of speakers. It has gained great popularity in a wide range of applications
including access control, forensic evidence provision, and user authentication in
telephone banking. After decades of research, current speaker recognition systems
have achieved rather satisfactory performance, given that the enrollment and test
utterances are sufficiently long and the speech signals are clear enough [1, 2, 3, 4, 5].

A popular approach to speaker recognition is the GMM-UBM framework [6, 7].
This approach involves a well-trained universal background model (UBM) to rep-
resent general speakers, and each enrolled speaker is represented by a Gaussian
mixture model (GMM) which is adapted from the UBM via maximum a posteriori
(MAP) estimation [8].

Another main-stream approach is based on joint factor analysis (JFA) and its
‘simplified’ version, the so-called i-vector model. While JFA assumes that speaker
and session variance distributes in two low-dimensional subspaces [9], the i-vector
approach models speaker and session variance in a single low-dimensional sub-
space [10]. To improve the i-vector model, a multitude of normalization techniques
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have been proposed, such as with-in class covariance normalization (WCCN) [11]
and nuisance attribute projection (NAP) [2].

Recently deep learning has gained much success in multiple domains and caused
extensive interests [12]. For speaker recognition, a very recent study applies DNN
models trained for speech recognition to substitute UBMs, so that rich information
in phones are employed to build more accurate models than GMMs that are trained
in an unsupervised way [13, 14]. Additionally, DNNs have been utilized to extract
speaker features [15, 16].

1.1 Challenge with short utterance

In spite of the great achievement, current speaker recognition systems perform well
only if the enrollment and test data are abundant. In most applications, howev-
er, users are reluctant to provide much speech data particularly at the test phase,
for instance in telephone banking. In other situations, it is highly difficult, if not
impossible, to collect sufficient data, for example in forensic applications. If the en-
rollment and test utterances are in the same text (so called ‘text-dependent’ task),
short utterances would be not a big problem [17]; however for text-independent
tasks, severe performance degradation is often observed if the enrollment/test ut-
terances are not long enough, as has been reported in a wealth of studies [18, 19, 20].
For instance, Vogt et al. reported that when the test speech was shortened from 20
seconds to 2 seconds, the performance in term of equal error rate (EER) increased
sharply from 6.34% to 23.89% on a NIST SRE task [21]. Mak et al. showed that
when the length of the test speech is less than 2 seconds, the EER was raised to as
high as 35.00% [20]. Table 1 presents some results obtained in our study, where the
enrollment data is sufficient and the test utterances vary from 300 to 2 seconds.

Table 1 Impact of the length of test utterances

Length (s) 300 20 10 5 2

EER (%) 634 887 1215 16.99 23.89

1.2 Research on short utterance speaker recognition
The research on short utterance speaker recognition (SUSR) is still limited. In [19],
the authors show that performance on short utterances can be improved by sep-
arating the speaker variation and the session variation in the framework of joint
factor analysis (JFA). This work is extended in [22] which reports that the i-vector
model can distill speaker information in a more effective way so it is more suitable
for SUSR. In addition, a score-based segment selection technique has been proposed
in [23], which evaluates the reliability of each test speech segment based on a set
of cohort models, and scores the test utterance with the reliable segments only. A
relative EER reduction of 22% was reported by the authors on a recognition task
where the test utterances are shorter than 15 seconds in length.

It should be noted that the results reported in these researches are based on test
utterances that are of 5~10 seconds. This is still rather long in many scenarios.
For very short test utterances, i.e., 1~2 seconds in length, there are no satisfactory
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solutions yet, to the authors’ best knowledge. In addition, if the enrollment utterance
is also short, the recognition will be more challenging, for which very little research
has been conducted. This paper focuses on improving the recognition performance
on very short test utterances where the valid speech is of 2 seconds or 2 words
in maximum, and dealing with the situation where both the test and enrollment
utterance are short.

1.3 Motivations

We argue that the difficulty associated with SUSR can be largely attributed to the
mismatched distributions of the speech data used to train the universal background
model (UBM) and to enroll and test a particular speaker. Following the standard
framework of Gaussian mixture model-universal back ground model (GMM-UBM),
the characteristic of a particular speaker is modeled by a GMM. A commonly adopt-
ed GMM-UBM setup is to train an UBM by a pool of speech data involving a
large number of speakers via the EM algorithm [24], and then a speaker’s model
is derived from the UBM the enrollment speech by MAP estimation [25] with only
mean vectors being adapted. With this setup, the likelihood of a test utterance
x={a;t =1,2,..,T} evaluated on the model of a speaker s is given by:

L(z;s) = HZMN(%;MZ,EM (1)

t k

where z; is the speech feature vector at frame ¢, and k indexes the Gaussian compo-
nent. N(-; p5, ) is the k-th Gaussian component with the mean vector xf and the
covariance matrix ¥y, and 7y, is the associated prior distribution. We highlight that
here {7} are speaker independent since they are not updated in speaker enrollmen-
t. This means that if the true distribution of an enrollment speech deviates from
the model prior, the enrolled model will be biased. Likewise, if the true distribution
of a test speech deviates from the prior, the likelihood score for the test speech will
be biased.

If the enrollment/test speech is abundant, the true distribution of the speech
tends to match the model prior well, partly due to the fact that speech signals of
a particular language follow a certain natural distribution over phones. However, if
the enrollments/test speech is short, the model prior usually can not reflect the true
distribution of the signal, leading to biased speaker models and biased likelihood
evaluation.

The problem of prior-mismatch is show in Fig. 1, where the ellipses represent
Gaussian components, and the two squares represent the coverage of the enrollment
and test speech respectively. If the enrollment speech is sufficient, there is not the
prior-mismatch problem and the speaker model can be well trained (the outer large
square); however since the test speech is short and so only part of the Gaussian
components are covered, the likelihood evaluation is biased. This is reflected by
the fact that computing the likelihood is impacted by the Gaussian components
that are not covered by the test speech. If the enrollment utterance is short as
well, the components covered by the enrollment and test speech could be even not
overlapped. This causes more severe problem because: (1) the components covered
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by the test speech are not well trained in enrollment; (2) the components that are
trained in enrollment are not the ones covered (required) by the test speech, so
impact the likelihood computation.

Short Enrollment

Short Test

Full Enroliment

Figure 1 Mismatch between the model prior and the true distributions of enrollment/test speech
signals.

This paper proposes a subregion modeling approach to tackle this problem. Specif-
ically, the acoustic feature space is divided into a number of ‘homogeneous’ sub-
regions, where ‘homogeneous’ means that the above mentioned matched-priori as-
sumption is satisfied. The UBM and speaker GMMs are then constructed within
each subregion, and the likelihood is computed by merging the evaluations on all
the individual subregion models. This can be formulated as the follows:

Lwis) = [I30Plelen) 3 mesl (s it o Be) @)
t ¢ k

where ¢ indexes the regions, and P(c|z;) is the posterior probability that z; resides
in the c-th subregion. This model can be simplified by a ‘hard’ subregion assignment,

given by:

L(z;s) ~ H Z T N (T 13 1, L k) (3)
k

t

where ¢ denotes the subregion that is assigned to x; by MAP, given by:

¢ = argmax P(c|z).
(&

The central task of the above subregion modeling is to define the subregions and
estimate the posterior probability P(c|x;). This can be achieved by clustering the
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Gaussian components in an unsupervised fashion and then computing P(c|z;) by
the Bayesian role, but this is usually not satisfactory as the unsupervised learning
does not leverage any external knowledge so the resulting model would be not very
different from a larger GMM with more Gaussian components. A more ideal ap-
proach is to associate each subregion ¢ with a speech unit, e.g., a phone. We choose
this approach and employ an automatic speech recognition (ASR) system to conduc-
t the subregion assign by the technique of forced phone alignment. This approach
possesses several advantages. First, it is a supervised clustering that involves linguis-
tic knowledge, e.g., the phone inventory, and so the constructed subregions tend to
be homogeneous in nature. Second, by employing ASR, it implicitly leverages much
exotic resources that are used to train the ASR system, e.g., large speech data, word
dictionaries and language models. Third, with the phones obtained with ASR, it is
possible to choose the best discriminative subregions, such as those associated with
vowels or nasals.

With the subregion modeling, speakers can be modeled in a more thorough way,
given that sufficient training data are available for each speech unit. In practice,
however, data are often scare for some speech units. This paper proposes a solution
which clusters similar speech units into speech unit classes, and uses the speech
unit classes to construct robust acoustic subregions. This approach works well with
sufficient enrollment data as we will show in Section 5; however, if the enrollment
utterance is short, it is still problematic. This is because some speech unit classes
may be assigned very little or even no enrollment data, and so the correspond-
ing subregion speaker models are highly under-estimated. To solve this problem, a
model synthesis approach is proposed in this paper, which synthesizes models for
speech unit classes with very little training data from classes with abundant data
by a linear transform.

The rest of the paper is organized as follows: Section 2 discusses some related
works, and 3 presents the subregion modeling, where we assume that the enrollment
data is sufficient. Section 4 presents the model synthesis approach to deal with
speech units with limited enrollment data. Section 5 describes the experiments, and
the entire paper is concluded in Section 6.

2 Related work

The idea of employing phone information in speaker recognition has been investi-
gated by other researchers, particularly with the DNN-based method proposed by
Lei and colleagues [14]. The difference is that they use the DNN-based phone poste-
riors to replace GMM-based class posteriors to train i-vector models, while we use
phone posteriors or alignments to partition acoustic space into subregions, and each
subregion is still modeled by a GMM. Another difference is that Lei’s method [14]
employs the phone knowledge only in model training, while our method employs it
in both training and test.

Using phone knowledge is also a unique advantage when comparing the subregion
model to the i-vector model in SUSR. It is well known that the i-vector model posses
some advantage when dealing with short enrollment/test utterances [22], due to its
nature of sharing statistical strength among different acoustic regions. However
this model is purely unsupervised and does not utilize any phone knowledge. This
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problem can be mitigated to some extent by the DNN-based method discussed
above [14], however the phone knowledge conveyed by DNNs only exists in UBM
training. The subregion model proposed in this work, in contrast, utilizes the phone
knowledge in both model training, speaker enrollment and test. We believe there
are some methods that can be used to combine these two different approaches but

leave the investigation as future work.

3 Subregion modeling based on speech unit classes

The proposed subregion framework involves three components. Firstly the speech
unit classes are derived by clustering similar speech units. Secondly the subregion
models (including UBMs and speaker GMMSs) are trained for each subregion that
is defined by the speech unit classes. Finally test utterances are scored with the
subregion models. Fig. 2 illustrates the system framework.

Speech Unit Class
Definition

\ 4 ) 4

Speech Unit Class Dependent

Speaker Model training Multiiodelzcorlng

Figure 2 The Framework of the subregion modeling

3.1 Speech units based on Finals

The inventory of speech units varies for different languages. In Chinese, the lan-
guage focused in this paper, speech units can be words, syllables, Initials/Finals
(IF) or phones [26]. Although language-independent speech units can be defined,
e.g., through the International Phonetic Association (IPA) [27] and multi-lingual
speaker /speech recognition systems [28, 29], language-dependent speech units gener-
ally cover the acoustic space in a better way. Therefore we consider Chinese-specific
speech units to define the subregions in this paper.

A widely used speech unit definition in Chinese is based on the Initial/Final
(IF) structure of syllables, where the initials correspond to consonants, and the
finals correspond to vowels and nasals [26]. Compared with other units such as
syllables and phones, the IFs are moderate in number (65 in total) and can reflect
the phonetic structure of Chinese pronunciations. The IF set has been reproduced
in Table 2, where {_a, o, _e, i, _u, _v} are zero initials and appear in non-initial
syllables [26].

Among the IFs, Finals have been found conveying more spectral information than
Initials [30]. Better speaker recognition performance therefore can be obtained by
selecting speech segments corresponding to Finals only. To verify this conjecture,
we built three GMM-UBM speaker recognition systems, with speech segments of
Initials, Finals and all the IFs, respectively. The experiments were conducted on
SUD12, a Chinese SUSR database recorded at the Tsinghua University (details of
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Table 2 The IF set of Standard Chinese

Type ‘ Units
. b,p, m f, d, t, n I g k,
Initial i
h, j, d, x, zh, ch, sh, z, ¢, s,
(27) .
r, _a, 0, _e, Ji, _u, _v
a, ai, an, ang, ao, e, «i, en,
. eng, er, o, ong, ou, i, i1, i2,
Final L. . ) ..
ia, ian, iang, iao, ie, in, ing,
(3g) | A" ene 1ao. &
iong, iou, u, ua, uai, uan, uang,
uei, uen, ueng, uo, v, van, ve, vn

the database are given in Section 5). An off-the-shelf speech recognition system
trained on a large database and with the same IF set was used to segment the
speech signals into IF segments. The results in EER are shown in Table 3. It is
clear to see that the system based on the Finals delivers much better performance
than that based on the Initials and the entire IF set. Based on this result, we choose
IFs as the speech units in this work, but only the speech segments of Finals are
used to build systems. In other words, the Finals are the effective speech units when
constructing subregion models in this study.

Table 3 EERs with different IF sets
Data Type ‘ EER (%)

All IFs 7.16
Initials 40.25
Finals 5.86

3.2 Speech units clustering

Once the speech units are defined as the Finals, the subregion modeling can be
conducted by building Final-dependent GMM-UBMSs. This approach, however, is
almost impossible in practice, due to data sparsity caused by the large number of
Finals. A possible solution is to cluster similar units together and build subregion
models based on the resulting speech unit classes. Two clustering approaches are
investigated in this section, one is based on phonetic knowledge and the other is
data-driven.

3.2.1 Clustering by phonetic knowledge

The first approach clusters the Finals based on phonetic knowledge. This paper di-
rectly applies the definition of speech unit classes provided by [31], which is based on
tongue’s height and backness information of the speech units in the IPA definition.

3.2.2 Clustering in data-driven way

The second approach clusters the Finals based on the distributions of speech sig-
nals of each Final. There are a multitude of approaches to this clustering, e.g., the
tree-based tying used for acoustic modeling in ASR [32] and unit selection in speech
synthesis [33], the greedy merge of similar classes used in maximum likelihood linear
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regression (MLLR) [34, 35]. Most of these approaches try various possible merge
schemes and select the best one that leads to the highest probability on training
data. In this study, we develop a vector quantization (VQ) method based on the
K-means algorithm [36] to conduct the clustering. In contrast to the methods men-
tioned above, our approach calculates pair-wised distance among models, and then
select close models to merge. Since no training data need to be revisited for every
possible clustering schemes, our method is simple and quick. Because the clustering
method itself is not the main focus of this work, we believe this simple algorithm is
sufficient for our purpose. The whole clustering process is illustrated as follows:

e Train a global UBM with a large training dataset. The data are chosen to
cover all the Finals, and are balanced in terms of channels and genders.

e Let N denote the number of Finals. Collecting data of each Final and train
local (Final-dependent) UBMs based on the global UBM by MAP. Again, the
off-the-shelf speech recognition system is employed to segment the training
speech data. Denote the local UBM of Final ¢ by A\; = {mp, i, S : k =
1,...,K}. Note that only {u;  : £ =1, ..., K} are Final-dependent.

e Define the distance of two Final-dependent UBMs based on the symmetric
Kullback-Leibler (KL) divergence [37], given by:

K
Ml =7 m (N (i g, SN (1.5, ) (4)

where

:“J k(d))?
o (d)?

)

D
zk
N SN Gy 50) = 5
d=1

where D is the dimension of the feature vector. Note we have assumed that
the covariance matrices are diagonal, and the d-th primary diagonal element
has been denoted by o(d).

e Assume that the number of unit clusters requested is C. Select C' Final-
dependent UBMs as the initial centers of the C' classes. The selection is based
on the KL divergence defined above and applies the max-min criterion, i.e.,
sequentially select the UBM whose minimum distance to other UBMs is the
maximum.

e The K-means algorithm [36] is conducted to cluster the N Final-dependent
UBMs into C' clusters, with the distance measure set to the KL divergence.

3.3 Subregion modeling based on speech unit classes

Denote the speech unit classes (Final clusters) by {SUC-c¢:= 1, ...,C'}. Based on the
classes, a subregion UBM can be trained for each SUC-c¢ with the training data that
are aligned to the Finals in SUC-c¢ by the speech recognition system. The subregion
UBM of class SUC-c is denoted by A\UZM . The speaker-dependent subregion GMM
models can be trained based on the subregion UBMs, using the enrollment data
that have been aligned to the Finals.
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In summary, the entire process of the subregion modeling approach is illustrated
in Fig. 3, and the details are as follows:

e Global UBM training, denoted by AUV2M | Train a global UBM with the entire
training dataset, by employing the expectation-maximization (EM) algorith-
m [24, 38].

e Subregion UBM training. The speech recognition system is used to align the
speech signals (acoustic features) to the Finals. The aligned speech data are
then assigned to the C speech unit classes according to the definition of {SUC-
c}. A subregion UBM A\YBM g trained for the c-th speech unit class based on
the global UBM, by employing the MAP algorithm [25] and with the speech
data assigned to SUC-c.

e Subregion speaker model training. For a speaker s, first segment the enroll-
ment speech data into Finals and assign the speech data to the speech unit
classes, by the same way as in the subregion UBM training. Then for each
speech unit class SUC-¢, a subregion speaker-dependent GMM A is trained by
MAP adaption from the subregion UBM AYBM with the assigned enrollment

data.
Enrollment Speech /WW)WWV'WJ\‘
For Speaker s ¢
Speech Recognition
_ Speech/SUC
SUC Definition |- — —)» Alignment
[
v Y
Speech For . Speech FOR
sSuC-1 suc-c
SUC-1 UBM _ Suc-C uBM >
2 UE d . oUaM g
Ay ol 4z
Y A
MAP
Y Y
Speaker Model vee Speaker Model
For SUC-1 For SUC-C
A 1 Ao
Figure 3 Speaker-dependent subregion model training. ‘SUC’ stands for speech unit class.

Note that with the subregion model, the total parameters of a speaker model
would be significantly increased, possibly leading to the problem of data sparsity.
However, the problem is not as that serious as the first glance, because only the
mean vectors are updated and priors and variances are shared across subregions.
Nevertheless, it would be certainly good if some pruning approach is applied to
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remove unrepresentative Gaussian components. We leave this pruning method as

future work.

3.4 Scoring with subregion models

With the speaker-dependent subregion GMMs trained, a test utterance can be s-
cored by scoring on each subregion and taking the average. More sophisticated
approach to fuse the subregion scores is left for future study. Suppose a test ut-
terance contains L Finals according to the decoding result of speech recognition,
and denote the speech unit class of the I-th final by ¢(1). Further denote the speech
segment of this unit by X;, and its length is 7;. The score of X; is measured by the
log likelihood ratio between the subregion speaker-dependent GMM )\‘Z(Z) and the
subregion UBM )\g(f;M , where s denotes the speaker. This is formulated by:

i1 = log p(Xy| L)) — log p(Xu| L)

The score of the entire utterance is computed as the average of the segment-based
scores:

L
_ il Pl

Pi T -
> T

4 Speaker model synthesis

The subregion modeling presented in the previous section assumes distributes, mod-
els and scores speech signals in appropriate subregions, and therefore does not rely
on the global prior distribution, i.e., {m} in (1). If all the subregion models are
well trained, then a major difficulty associated with SUSR, i.e., the biased prior
distribution caused by short test utterances, is largely solved.

A potential problem of this approach is that if the enrollment utterance is short
as well, some of the subregion models can be under-estimated, which will lead to
significant performance reduction if the test utterances fall in the data-sparse sub-
regions. The unit clustering approach discussed in the previous section can partially
solve the problem, however it is still problematic if the enrollment utterance is very
short. In this section, we propose a model synthesis approach to to address the
problem, which constructs subregion models for speech unit classes with no or very
limited enrollment data based on data-rich subregion models by a linear transfor-
m. The basic assumption is that the relationship between two subregion models
does not change when adapt speaker-dependent models (subregion GMMs) from
speaker-independent models (subregion UBMs), and the relationship can be repre-
sented by a linear transform. These transforms then can be applied to synthesize
speaker-dependent GMMs for speech unit classes with limited data. In this study,
we employ the maximum likelihood linear regression to train the linear transform.

4.1 Maximum likelihood linear regression
The maximum likelihood linear regression (MLLR) [34, 39] was first proposed by the
Cambridge group to deal with channel mismatch and speaker variability in speech
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recognition. Given a GMM \ = (mg, pug, X : £ = 1,2, ..., K) and a speech segment
X, the MLLR seeks for a linear transform L that maximizes the likelihood function

P(X;A L) =Y mN(X; L&, Sp) (5)
k

where

gk = [Mk:,la ceoy Uk, D> 1]
is the extended mean vector, and D is the dimension of speech features. L is an
D x (D + 1) transformation matrix. The optimization of the matrix L in the sense
of maximum likelihood gives the following estimation:

Li = IiiGiil

where L; is the i-th row of L, and r;, G; ' is calculated as:

i ()&

Zm

k=1t=1

Gi= Z fkfk Z?"k

where ¢ indexes time, x;(t) is the i-th element of the feature vector at time ¢, and
ri(t) is the posterior probability of x(t) belongs to the k-th Gaussian component.
012(i) is the i-th primary diagonal element of X5, where we have assumed that Y,
is diagonal.

4.2 Model synthesis based on subregion UBMs

With the MLLR technique, a transforms L;; can be learned for each subregion
UBM pair (AYPM, AUBM) Since the amount of speech data aligned to each speech
unit classes is relatively large when training the subregion UBMs, the transforms
i.j» the subregion UBM A\VBM is used

as the GMM model in (5), and the speech data aligned to the j-th speech unit class

can be easily learned. For example, to learn L

are used as the adaption data X.

Once the transforms are learned, they can be used to synthesize speaker-dependent
subregion GMMSs in speaker enrollment. Specifically, the enrollment speech data
is first segmented by the speech recognition system and the speech features are
assigned to the speech unit classes. If a speech unit class j involves sufficient training
data, then the subregion GMM A7 is derived by MAP from the corresponding
subregion UBM MY ZM  where s denotes the speaker. If the speech unit class involves
little training data, then the subregion GMM is synthesized from a well-trained
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speaker-dependent subregion model, A for example. The synthesis is implemented
as a linear transform:

Hi,k

ﬂj,kLi,j[ 1 k:1,2,...,K

where k indexes the Gaussian components.
Fig. 4 illustrates the subregion UBM-based model synthesis. Firstly the transform
L; ; is learned to map the subregion UBM AY/BM to )\?BM, and then L; ; is used

to synthesize the speaker subregion GMM Aj based on A;.

Universal
UBM
SUC-i UBM Li SUC-j UBM
UBM _ UBM
j’i - = —l" - ‘Z’J'

SUC-i
Speaker GMM
Y

I

Speaker GMM

Figure 4 lllustration of model synthesis based on subregion UBMs. ‘SUC’ stands for speech unit
class.

4.3 Model synthesis based on cohort speakers

A particular shortcoming of the subregion UBM-based model synthesis is that the
transforms {L; ;} are speaker independent. This assumption is over strong, as d-
ifferent speakers may exhibit clear different characteristics when moving from one
pronunciation to another. We propose speaker-dependent transforms based on co-
hort sets.

A cohort set [40] is a cluster of speakers that share similar characteristics. Given
a speaker s, there is an individual cohort set H (s, ¢) for each subregion ¢, and every
cohort set H(s,c) involves speakers that are the similar to speaker s in the c-th
subregion. The KL divergence is used to measure speaker distance in our study, as
given by (4).

The cohort speaker-based synthesis is illustrated in Fig. 5. Firstly we chose a
universal cohort speaker set H which involved 300 speakers, and each speaker was
modeled by a set of subregion GMMs, defined as {\* : ¢ = 1,2,...,C}, where h
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indexes the speaker and ¢ indexes the subregion. Secondly the MLLR transform
was estimated for each speaker h between each subregion pairs (4,75), denoted by
{L jiheH}

When registering a speaker s, for each speech unit class c, if the training data
are sufficient, the subregion speaker model \J is trained directly by MAP with the

/\QJBM ; otherwise, it is synthesized from subregion

corresponding subregion UBM
models of his/her cohort speakers. Specifically, specify a data-rich subregion of the
speaker, e.g., subregion ¢’, and then specify the cohort set H(s,c') C H by finding
the similar speakers in the universal cohort set H. The subregion model AJ for
data-sparse subregion c is then synthesized from the data-rich subregion model
of speaker s, i.e., A}, and the linear transforms defined by the cohort set, that is

{Li}yc :h € H(s,c')}. Again, only the mean vectors are synthesized, formulated by:

> Lbophy k=12..K
h€H (s,¢’)

s _
/’[’c,k: -

where k£ indexes the Gaussian components.

Universal
UBM

SUC-i UBM
AL’BJ{
i

SUC-j UBM
UBM
A7

< \\
// SUC-i N
Universal Cohort Set*,
\

\ .
P N
suC+ N

7, . N\
/ Universal Cohort Set \
/ \

SUC-i
Speaker
Cohort Set

SUC-j ]
Speaker /
Cohort Set /

SUC-i
Speaker GMM

i

Figure 5 The illustration of model synthesis based on cohort speakers. ‘SUC’ stands for speech
unit class.

5 Experiment

5.1 Database

5.1.1 Database for evaluation (SUD12)

There is not a standard database for performance evaluation on text-independent
SUSR tasks. A possible way to construct an SUSR database quickly is to cutting
out words or phrases from a database used for general speaker recognition. This
approach, however, may introduce artifacts when cutting continuous speech sig-
nals. We therefore decided to design and recorded a database that is suitable for
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SUSR research and publish it for research usagel'). The database was named as
“SUD12” [41, 42], and was designed in the principle to guarantee sufficient IF bal-
ance. In order to focus on short utterances and exclude other factors such as channel
and emotion, the recording was conducted in the same room and with the same mi-
crophone, and the reading style was neural. There are in total 30 male speakers and
30 female speakers, and all the utterances are in Standard Chinese. The sampling
rate is 16 kHz, and the sampling precision is 16 bits.

The enrollment dataset involves 100 Chinese sentences, each of which contains 15
~ 30 Chinese characters, and the average length of effective speech signals is about
10 seconds. These sentences were selected by the ELFU algorithm [43] from 5,000
sentences in the news domain taken from the People’s Daily, with the objective
to maximize the di-IF coverage [44]. The IF coverage rate is 100% and the di-IF
coverage rate is 82%, and each IF exists in at least 10 utterances. The statistics of
the di-IF is presented in Table 4.

Table 4 DI-IF statistics of SUD12 enrollment data

di-IF Type Example | Number
Initial - Final zh-ong 380
Zero Initial - Final | _y-uan 36
Final - Initial ong-n 798
Final - Zero Initial | ua-_y 228
All - 1,442

The test dataset of SUD12 involves 63 short utterances, which covered all the
Finals in Standard Chinese. The lengths of the recordings are not more than 2

seconds. The distribution is shown in Table 5.

Table 5 Length distribution of SUD12 test data

Length (s) | Number | Percentage (%)

< 0.5 38 60.3
05-1.0 15 23.8
1.0-20 10 15.9

5.1.2 Database for UBM training (863DB)

The speech data used to train the UBMs and subregion UBMs were chosen from
the 863 Chinese speech corpus [45]. The 863 database was well designed to cover
all the Chinese IFs, and which is particularly suitable to train subregion UBMs for
speech unit classes. All the recordings are at a sampling rate of 16 kHz, and the
sample precision is 16 bits. In this study, we chose 80 males and 80 females from

Whttp: //www.cslt.org/resources.php?Public%20data
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the 863 corpus, and for each speaker, there are 75 speech utterances, and the length
of the speech signals is 17 hours in total. This dataset is denoted by 863DB for

convenience.

5.1.83 Database for cohort speaker selection (dEarDB)

In order to construct cohort-based MLLR transforms, we employed another co-
hort speaker database that was recorded by Beijing d-Ear Technologies Co., Ltd.
for Korea Speech Information Technology and Promotion Center. It contains 150
male speakers and 150 female speakers. As SUD12, the recordings are sampled at
16 kHz with 16-bit precision. For each speaker, 100 Standard Chinese sentences
were recorded, and each utterance involves 10 seconds of effective speech signals
approximately. This database is denoted by dEarDB.

5.2 Experimental conditions

The acoustic feature is the conventional 32-dimensional Mel frequency cepstral co-
efficients (MFCC), which involves 16-dimensional static components plus the first
order derivatives. Note that a simple energy-based voice activity detection (VAD)
has been performed before the feature extraction, and the cepstral mean normal-
ization (CMN) [46] is applied as a post-process to reduce the impact of channel
mismatch.

We choose the conventional GMM-UBM approach to construct the baseline sys-
tem. The UBM consists of 1,024 Gaussian components and is trained with the
863DB. Note that this setting is ‘almost’ optimal in our experiments, i.e., using
more Gaussian components can not improve system performance in any significant
way. The SUD12 is employed to conduct the evaluation. With the enrollment data,
the speaker GMMs are derived from the UBM by MAP. The test result on the
SUD12 test set is 29.78% in EER. This is a reasonable performance for SUSR. that
involves short utterances less than 2 seconds [19, 20].

5.3 Subregion modeling
The first experiment investigates the subregion modeling based on speech unit
clustering. Two clustering approaches are studied: the knowledge-based approach
(‘SBM-KW’) and the data-driven approach (‘SBM-DD’). For the knowledge-based
approach, we simply follow the definition of speech unit classes described in [31].
For the data-driven approach, it is necessary to choose an appropriate number of
classes for the clustering algorithm. If the number of classes is small, the subregions
tend to be not homogeneous in terms of prior distributions and so can not deal
with short test utterances, and if the number of classes is large, the problem of data
sparsity is more serious. In order to determine the optimal class number (denoted
by C), the recognition performance with various values of C' has been evaluated and
the results are reported in Fig. 6. It can be seen that both too small and too large
values lead to suboptimal performance, and the optimal setting in our experiment
is C=6. Table 6 shows the derived unit classes with this configure. It can be seen
that the clustering result is reasonable at least intuitively.

The results in terms of EER are presented in Table 7, where ‘GMM-UBM’ is
the baseline system, and ‘SBM-KW’ and ‘SBM-DD’ are subregion systems with
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Figure 6 EERs with different numbers of speech unit classes in data-driven clustering.

Table 6 Speech unit classes derived in data-driven way

Class Speech Units

a, ao, an, ang, ai, ia, iao
e, ie, ai, ei, i, uei, iii
iou, ou, u, ong, iou, o

Vv, vn, ve, van, er

en, ian, uan, uen, uai, in, ii, ing

S 1AW N

eng, iang, iong, uang, ueng

the knowledge-based and data-driven speech unit clustering, respectively. ‘EERR’
stands for relative EER reduction. Note that the optimal number of classes (C=6)
has been employed in the data-driven system. For a better understanding of the
performance on various operation points, the DET curves are presented in Fig. 7,
where the horizontal axis represents the false alarm (incorrect acceptance) probabil-
ity and the vertical axis represents the miss probability (incorrect rejection) [47]. It
can be seen that the systems based on subregion modeling outperforms the GMM-
UBM baseline, with either the knowledge-based or data-driven clustering approach.
When comparing the two clustering approaches, it is observed that the data-driven
approach is more effective. This is probably because the data-driven approach takes
into account characteristics of real data, and the balance of data over the resultant
speech unit classes may have lead to more robust subregion models.

One may argue that the comparison in Table 7 is not completely fair, as the
subregion model involves more parameters and thus naturally more powerful. This is
certainly true in general, however in practical systems where training and enrollment
data are limited, more complex models unnecessarily deliver better performance.
In fact in our experiment, it showed that 1024 Gaussian components are sufficient
for the conventional GMM-UBM model to describe the entire acoustic space (at
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least with the current modeling approach based on EM/MAP) and adding more
components did not offer clear advantage. Therefore, the gains obtained by the
subregion modeling should not be attributed to the increased parameters, but the
new modeling method based on subregions that are derived from the external speech

recognition system.

Table 7 Performance of subregion modeling

System | EER (%) | EERR (%)
GMM-UBM (baseline) | 29.78 -
SBM-KW 25.80 13.36
SBM-DD 22.74 23.64

100 ‘ ;
—— GMM-UBM(baseline)
7 SBM-KW
80 1
< 60 1
S
nd
o
L 40 1
20 1
O ' v T
0 20 40 60 80 100
FAR(%)
Figure 7 The DET curves with the GMM-UBM baseline and subregion models.

5.4 Model synthesis

The second experiment studies the MLLR-based model synthesis for speech unit
classes with very little enrollment data. We choose the class definition of Table 6,
and simulate data-sparse speech unit classes by discarding the speech segments

assigned to the class.

5.4.1 Synthesis based on subregion UBMs

We study the model synthesis approach based on subregion UBMs. The results
are shown in Table 8, where the value shown in the element (SBSi,SBBj) is the
EER with the i-th subregion model synthesized from the j-th subregion model. The
column ‘NULL’ presents the results without any model synthesis. It can be seen
that with the model synthesis, the performance is generally improved compared

with the baseline system.
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Table 8 Results with model synthesis based on subregion UBMs

EER (%) | SBB1 | SBB2 | SBB3 | SBB4 | SBB5 | SBB6 | NULL

SBS1 - 26.61 | 27.09 | 27.08 | 27.29 | 26.68 | 28.94
SBS2 27.12 - 27.06 | 27.04 | 27.27 | 26.63 | 30.26
SBS3 27.21 | 27.18 - 27.47 | 26.62 | 26.98 | 29.92
SBS4 27.02 | 27.56 | 27.11 - 27.31 | 26.17 | 29.55
SBSH 27.10 | 27.15 | 26.79 | 27.11 - 26.69 | 29.43
SBS6 26.94 | 27.52 | 27.01 | 27.25 | 27.32 - 29.12

5.4.2 Synthesis based on cohort speakers

As discussed in Section 4, synthesis based on subregion UBMs suffers from the
speaker-independent assumption for MLLR transforms. This experiment studies
the speaker-dependent synthesis approach based on speaker-dependent cohort sets.
For simplicity, we choose the 4-th speech unit class as the data-sparse class and
synthesize the subregion model from the model of the 3-th speech unit class.

Firstly we investigate the impact of the size of the speaker-dependent cohort set.
It was found that the EER first drops as the size of the speaker-dependent cohort
set increases, until the best performance is reached; afterward, the EER starts to
increase as the size of the cohort set increases. In our experiment, the best result is
obtained when the size of the cohort set is set to 20. This optimal value is used in
the rest of the experiments.

Table 9 presents the results with the MLLR-based model synthesis, where the
row ‘NO-MLLR’ present the system without any treatment for data-sparse speech
unit classes. Compared with the case with sufficient enrollment data (‘SMB-DD’),
significant performance reduction is observed. This means that enrollment data s-
parsity indeed causes serious impact for speaker recognition. The row ‘MLLR-UBM’
presents the system with model synthesis based on subregion UBMs, and the row
‘MLLR-COHORT’ presents the system with model synthesis based on speaker-
dependent cohort sets. The values in the ‘EERR’ column are EER reductions com-
pared with the ‘NO-MLLR’ system. It can be found that model synthesis does offer
clear performance improvement in the case with limited enrollment data, and the
cohort-set-based synthesis outperforms the subregion UBM-based synthesis.

Table 9 Results with model synthesis

System | EER (%) | EERR (%)
SBM-DD 22.74 -
NO-MLLR (baseline) | 29.55 -
MLLR-UBM 27.11 8.26
MLLR-COHORT 24.33 17.66

6 Conclusions
In this paper, we propose a subregion modeling approach for text-independent short
utterance speaker recognition. To deal with the problem of data sparsity in enroll-

ment and test, the speech units (IFs) are clustered into speech unit classes in the
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subregion modeling; and to deal with short enrollment utterances, a model synthe-

sis approach based on MLLR has been proposed. The experimental results show

that the proposed subregion modeling approach, plus the data-driven speech unit

clustering, gains significant performance improvement on very short test utterances.

In the case of limited enrollment data, the simulation experiment shows that the

model synthesis approach based on cohort speakers can largely recover the perfor-

mance lost caused by enrollment data sparsity. Future work involves combination

of feature-based and model-based compensations for short utterances, and testing

the proposed approaches in the i-vector framework.
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