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Abstract

Short utterance speaker recognition (SUSR) is highly challenging due to the
limited enrollment and/or test data. We argue that the difficulty can be largely
attributed to the mismatched prior distributions of the speech data used to train
the universal background model (UBM) and those for enrollment and test. This
paper presents a novel solution that distributes speech signals into a multitude of
acoustic subregions that are defined by speech units, and models speakers within
the subregions. To avoid data sparsity, a data-driven approach is proposed to
cluster speech units into speech unit classes, based on which robust subregion
models can be constructed. Further more, we propose a model synthesis
approach based on maximum likelihood linear regression (MLLR) to deal with
no-data speech unit classes.

The experiments were conducted on a publicly available database SUD12. The
results demonstrated that on a text-independent speaker recognition task where
the test utterances are as short as 2 seconds, the proposed subregion modeling
offered a 23.64% relative reduction in equal error rate (EER), compared with the
standard GMM-UBM baseline. In addition, with the model synthesis approach,
the performance can be greatly improved in scenarios where no enrollment data
are available for some speech unit classes.

Keywords: Short Utterance; Speaker Recognition; Subregion Model; Model
Synthesis

1 Introduction
Speaker recognition (also named as speaker verification) aims to verify claimed

identities of speakers. It has gained great popularity in a wide range of applications

including access control, forensic evidence provision, and user authentication in

telephone banking. After decades of research, current speaker recognition systems

have achieved rather satisfactory performance, given that the enrollment and test

utterances are sufficiently long and the speech signals are clear enough [1, 2, 3, 4, 5].

A popular approach to speaker recognition is the GMM-UBM framework [6, 7].

This approach involves a well-trained universal background model (UBM) to rep-

resent general speakers, and each enrolled speaker is represented by a Gaussian

mixture model (GMM) which is adapted from the UBM via maximum a posteriori

(MAP) estimation [8].

Another main-stream approach is based on joint factor analysis (JFA) and its

‘simplified’ version, the so-called i-vector model. While JFA assumes that speaker

and session variance distributes in two low-dimensional subspaces [9], the i-vector

approach models speaker and session variance in a single low-dimensional sub-

space [10]. To improve the i-vector model, a multitude of normalization techniques



Zhang et al. Page 2 of 20

have been proposed, such as with-in class covariance normalization (WCCN) [11]

and nuisance attribute projection (NAP) [2].

Recently deep learning has gained much success in multiple domains and caused

extensive interests [12]. For speaker recognition, a very recent study applies DNN

models trained for speech recognition to substitute UBMs, so that rich information

in phones are employed to build more accurate models than GMMs that are trained

in an unsupervised way [13, 14]. Additionally, DNNs have been utilized to extract

speaker features [15, 16].

1.1 Challenge with short utterance

In spite of the great achievement, current speaker recognition systems perform well

only if the enrollment and test data are abundant. In most applications, howev-

er, users are reluctant to provide much speech data particularly at the test phase,

for instance in telephone banking. In other situations, it is highly difficult, if not

impossible, to collect sufficient data, for example in forensic applications. If the en-

rollment and test utterances are in the same text (so called ‘text-dependent’ task),

short utterances would be not a big problem [17]; however for text-independent

tasks, severe performance degradation is often observed if the enrollment/test ut-

terances are not long enough, as has been reported in a wealth of studies [18, 19, 20].

For instance, Vogt et al. reported that when the test speech was shortened from 20

seconds to 2 seconds, the performance in term of equal error rate (EER) increased

sharply from 6.34% to 23.89% on a NIST SRE task [21]. Mak et al. showed that

when the length of the test speech is less than 2 seconds, the EER was raised to as

high as 35.00% [20]. Table 1 presents some results obtained in our study, where the

enrollment data is sufficient and the test utterances vary from 300 to 2 seconds.

Table 1 Impact of the length of test utterances

Length (s) 300 20 10 5 2

EER (%) 6.34 8.87 12.15 16.99 23.89

1.2 Research on short utterance speaker recognition

The research on short utterance speaker recognition (SUSR) is still limited. In [19],

the authors show that performance on short utterances can be improved by sep-

arating the speaker variation and the session variation in the framework of joint

factor analysis (JFA). This work is extended in [22] which reports that the i-vector

model can distill speaker information in a more effective way so it is more suitable

for SUSR. In addition, a score-based segment selection technique has been proposed

in [23], which evaluates the reliability of each test speech segment based on a set

of cohort models, and scores the test utterance with the reliable segments only. A

relative EER reduction of 22% was reported by the authors on a recognition task

where the test utterances are shorter than 15 seconds in length.

It should be noted that the results reported in these researches are based on test

utterances that are of 5∼10 seconds. This is still rather long in many scenarios.

For very short test utterances, i.e., 1∼2 seconds in length, there are no satisfactory
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solutions yet, to the authors′ best knowledge. In addition, if the enrollment utterance

is also short, the recognition will be more challenging, for which very little research

has been conducted. This paper focuses on improving the recognition performance

on very short test utterances where the valid speech is of 2 seconds or 2 words

in maximum, and dealing with the situation where both the test and enrollment

utterance are short.

1.3 Motivations

We argue that the difficulty associated with SUSR can be largely attributed to the

mismatched distributions of the speech data used to train the universal background

model (UBM) and to enroll and test a particular speaker. Following the standard

framework of Gaussian mixture model-universal back ground model (GMM-UBM),

the characteristic of a particular speaker is modeled by a GMM. A commonly adopt-

ed GMM-UBM setup is to train an UBM by a pool of speech data involving a

large number of speakers via the EM algorithm [24], and then a speaker’s model

is derived from the UBM the enrollment speech by MAP estimation [25] with only

mean vectors being adapted. With this setup, the likelihood of a test utterance

x = {xt; t = 1, 2, ..., T} evaluated on the model of a speaker s is given by:

L(x; s) =
∏
t

∑
k

πkN (xt;µ
s
k,Σk) (1)

where xt is the speech feature vector at frame t, and k indexes the Gaussian compo-

nent. N (·;µs
k,Σk) is the k-th Gaussian component with the mean vector µs

k and the

covariance matrix Σk, and πk is the associated prior distribution. We highlight that

here {πk} are speaker independent since they are not updated in speaker enrollmen-

t. This means that if the true distribution of an enrollment speech deviates from

the model prior, the enrolled model will be biased. Likewise, if the true distribution

of a test speech deviates from the prior, the likelihood score for the test speech will

be biased.

If the enrollment/test speech is abundant, the true distribution of the speech

tends to match the model prior well, partly due to the fact that speech signals of

a particular language follow a certain natural distribution over phones. However, if

the enrollments/test speech is short, the model prior usually can not reflect the true

distribution of the signal, leading to biased speaker models and biased likelihood

evaluation.

The problem of prior-mismatch is show in Fig. 1, where the ellipses represent

Gaussian components, and the two squares represent the coverage of the enrollment

and test speech respectively. If the enrollment speech is sufficient, there is not the

prior-mismatch problem and the speaker model can be well trained (the outer large

square); however since the test speech is short and so only part of the Gaussian

components are covered, the likelihood evaluation is biased. This is reflected by

the fact that computing the likelihood is impacted by the Gaussian components

that are not covered by the test speech. If the enrollment utterance is short as

well, the components covered by the enrollment and test speech could be even not

overlapped. This causes more severe problem because: (1) the components covered



Zhang et al. Page 4 of 20

by the test speech are not well trained in enrollment; (2) the components that are

trained in enrollment are not the ones covered (required) by the test speech, so

impact the likelihood computation.

Short Enrollment
Short Test

Full Enrollment

Figure 1 Mismatch between the model prior and the true distributions of enrollment/test speech
signals.

This paper proposes a subregion modeling approach to tackle this problem. Specif-

ically, the acoustic feature space is divided into a number of ‘homogeneous’ sub-

regions, where ‘homogeneous’ means that the above mentioned matched-priori as-

sumption is satisfied. The UBM and speaker GMMs are then constructed within

each subregion, and the likelihood is computed by merging the evaluations on all

the individual subregion models. This can be formulated as the follows:

L(x; s) =
∏
t

∑
c

P (c|xt)
∑
k

πc,kN (xt;µ
s
c,k,Σc,k) (2)

where c indexes the regions, and P (c|xt) is the posterior probability that xt resides

in the c-th subregion. This model can be simplified by a ‘hard’ subregion assignment,

given by:

L(x; s) ≈
∏
t

∑
k

πc̃,kN (xt;µ
s
c̃,k,Σc̃,k) (3)

where c̃ denotes the subregion that is assigned to xt by MAP, given by:

c̃ = arg max
c
P (c|xt).

The central task of the above subregion modeling is to define the subregions and

estimate the posterior probability P (c|xt). This can be achieved by clustering the
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Gaussian components in an unsupervised fashion and then computing P (c|xt) by

the Bayesian role, but this is usually not satisfactory as the unsupervised learning

does not leverage any external knowledge so the resulting model would be not very

different from a larger GMM with more Gaussian components. A more ideal ap-

proach is to associate each subregion c with a speech unit, e.g., a phone. We choose

this approach and employ an automatic speech recognition (ASR) system to conduc-

t the subregion assign by the technique of forced phone alignment. This approach

possesses several advantages. First, it is a supervised clustering that involves linguis-

tic knowledge, e.g., the phone inventory, and so the constructed subregions tend to

be homogeneous in nature. Second, by employing ASR, it implicitly leverages much

exotic resources that are used to train the ASR system, e.g., large speech data, word

dictionaries and language models. Third, with the phones obtained with ASR, it is

possible to choose the best discriminative subregions, such as those associated with

vowels or nasals.

With the subregion modeling, speakers can be modeled in a more thorough way,

given that sufficient training data are available for each speech unit. In practice,

however, data are often scare for some speech units. This paper proposes a solution

which clusters similar speech units into speech unit classes, and uses the speech

unit classes to construct robust acoustic subregions. This approach works well with

sufficient enrollment data as we will show in Section 5; however, if the enrollment

utterance is short, it is still problematic. This is because some speech unit classes

may be assigned very little or even no enrollment data, and so the correspond-

ing subregion speaker models are highly under-estimated. To solve this problem, a

model synthesis approach is proposed in this paper, which synthesizes models for

speech unit classes with very little training data from classes with abundant data

by a linear transform.

The rest of the paper is organized as follows: Section 2 discusses some related

works, and 3 presents the subregion modeling, where we assume that the enrollment

data is sufficient. Section 4 presents the model synthesis approach to deal with

speech units with limited enrollment data. Section 5 describes the experiments, and

the entire paper is concluded in Section 6.

2 Related work
The idea of employing phone information in speaker recognition has been investi-

gated by other researchers, particularly with the DNN-based method proposed by

Lei and colleagues [14]. The difference is that they use the DNN-based phone poste-

riors to replace GMM-based class posteriors to train i-vector models, while we use

phone posteriors or alignments to partition acoustic space into subregions, and each

subregion is still modeled by a GMM. Another difference is that Lei’s method [14]

employs the phone knowledge only in model training, while our method employs it

in both training and test.

Using phone knowledge is also a unique advantage when comparing the subregion

model to the i-vector model in SUSR. It is well known that the i-vector model posses

some advantage when dealing with short enrollment/test utterances [22], due to its

nature of sharing statistical strength among different acoustic regions. However

this model is purely unsupervised and does not utilize any phone knowledge. This
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problem can be mitigated to some extent by the DNN-based method discussed

above [14], however the phone knowledge conveyed by DNNs only exists in UBM

training. The subregion model proposed in this work, in contrast, utilizes the phone

knowledge in both model training, speaker enrollment and test. We believe there

are some methods that can be used to combine these two different approaches but

leave the investigation as future work.

3 Subregion modeling based on speech unit classes
The proposed subregion framework involves three components. Firstly the speech

unit classes are derived by clustering similar speech units. Secondly the subregion

models (including UBMs and speaker GMMs) are trained for each subregion that

is defined by the speech unit classes. Finally test utterances are scored with the

subregion models. Fig. 2 illustrates the system framework.

Speech Unit Class 
Definition

Speech Unit Class Dependent 
Speaker Model training

Multi-Model ScorIng

Figure 2 The Framework of the subregion modeling

3.1 Speech units based on Finals

The inventory of speech units varies for different languages. In Chinese, the lan-

guage focused in this paper, speech units can be words, syllables, Initials/Finals

(IF) or phones [26]. Although language-independent speech units can be defined,

e.g., through the International Phonetic Association (IPA) [27] and multi-lingual

speaker/speech recognition systems [28, 29], language-dependent speech units gener-

ally cover the acoustic space in a better way. Therefore we consider Chinese-specific

speech units to define the subregions in this paper.

A widely used speech unit definition in Chinese is based on the Initial/Final

(IF) structure of syllables, where the initials correspond to consonants, and the

finals correspond to vowels and nasals [26]. Compared with other units such as

syllables and phones, the IFs are moderate in number (65 in total) and can reflect

the phonetic structure of Chinese pronunciations. The IF set has been reproduced

in Table 2, where { a, o, e, i, u, v} are zero initials and appear in non-initial

syllables [26].

Among the IFs, Finals have been found conveying more spectral information than

Initials [30]. Better speaker recognition performance therefore can be obtained by

selecting speech segments corresponding to Finals only. To verify this conjecture,

we built three GMM-UBM speaker recognition systems, with speech segments of

Initials, Finals and all the IFs, respectively. The experiments were conducted on

SUD12, a Chinese SUSR database recorded at the Tsinghua University (details of
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Table 2 The IF set of Standard Chinese

Type Units

Initial

(27)

b, p, m, f, d, t, n, l, g, k,

h, j, q, x, zh, ch, sh, z, c, s,

r, a, o, e, i, u, v

Final

(38)

a, ai, an, ang, ao, e, ei, en,

eng, er, o, ong, ou, i, i1, i2,

ia, ian, iang, iao, ie, in, ing,

iong, iou, u, ua, uai, uan, uang,

uei, uen, ueng, uo, v, van, ve, vn

the database are given in Section 5). An off-the-shelf speech recognition system

trained on a large database and with the same IF set was used to segment the

speech signals into IF segments. The results in EER are shown in Table 3. It is

clear to see that the system based on the Finals delivers much better performance

than that based on the Initials and the entire IF set. Based on this result, we choose

IFs as the speech units in this work, but only the speech segments of Finals are

used to build systems. In other words, the Finals are the effective speech units when

constructing subregion models in this study.

Table 3 EERs with different IF sets

Data Type EER (%)

All IFs 7.16

Initials 40.25

Finals 5.86

3.2 Speech units clustering

Once the speech units are defined as the Finals, the subregion modeling can be

conducted by building Final-dependent GMM-UBMs. This approach, however, is

almost impossible in practice, due to data sparsity caused by the large number of

Finals. A possible solution is to cluster similar units together and build subregion

models based on the resulting speech unit classes. Two clustering approaches are

investigated in this section, one is based on phonetic knowledge and the other is

data-driven.

3.2.1 Clustering by phonetic knowledge

The first approach clusters the Finals based on phonetic knowledge. This paper di-

rectly applies the definition of speech unit classes provided by [31], which is based on

tongue’s height and backness information of the speech units in the IPA definition.

3.2.2 Clustering in data-driven way

The second approach clusters the Finals based on the distributions of speech sig-

nals of each Final. There are a multitude of approaches to this clustering, e.g., the

tree-based tying used for acoustic modeling in ASR [32] and unit selection in speech

synthesis [33], the greedy merge of similar classes used in maximum likelihood linear
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regression (MLLR) [34, 35]. Most of these approaches try various possible merge

schemes and select the best one that leads to the highest probability on training

data. In this study, we develop a vector quantization (VQ) method based on the

K-means algorithm [36] to conduct the clustering. In contrast to the methods men-

tioned above, our approach calculates pair-wised distance among models, and then

select close models to merge. Since no training data need to be revisited for every

possible clustering schemes, our method is simple and quick. Because the clustering

method itself is not the main focus of this work, we believe this simple algorithm is

sufficient for our purpose. The whole clustering process is illustrated as follows:

• Train a global UBM with a large training dataset. The data are chosen to

cover all the Finals, and are balanced in terms of channels and genders.

• Let N denote the number of Finals. Collecting data of each Final and train

local (Final-dependent) UBMs based on the global UBM by MAP. Again, the

off-the-shelf speech recognition system is employed to segment the training

speech data. Denote the local UBM of Final i by λi = {πk, µi,k,Σk : k =

1, ...,K}. Note that only {µi,k : k = 1, ...,K} are Final-dependent.

• Define the distance of two Final-dependent UBMs based on the symmetric

Kullback-Leibler (KL) divergence [37], given by:

λi||λj =

K∑
k=1

πk(N(µi,k,Σk)||N(µj,k,Σk)) (4)

where

N(µi,k,Σk)||N(µj,k,Σk) =

D∑
d=1

(µi,k(d)− µj,k(d))2

σk(d)
2 ,

where D is the dimension of the feature vector. Note we have assumed that

the covariance matrices are diagonal, and the d-th primary diagonal element

has been denoted by σ(d).

• Assume that the number of unit clusters requested is C. Select C Final-

dependent UBMs as the initial centers of the C classes. The selection is based

on the KL divergence defined above and applies the max-min criterion, i.e.,

sequentially select the UBM whose minimum distance to other UBMs is the

maximum.

• The K-means algorithm [36] is conducted to cluster the N Final-dependent

UBMs into C clusters, with the distance measure set to the KL divergence.

3.3 Subregion modeling based on speech unit classes

Denote the speech unit classes (Final clusters) by {SUC-c:= 1, ..., C}. Based on the

classes, a subregion UBM can be trained for each SUC-c with the training data that

are aligned to the Finals in SUC-c by the speech recognition system. The subregion

UBM of class SUC-c is denoted by λUBM
c . The speaker-dependent subregion GMM

models can be trained based on the subregion UBMs, using the enrollment data

that have been aligned to the Finals.
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In summary, the entire process of the subregion modeling approach is illustrated

in Fig. 3, and the details are as follows:

• Global UBM training, denoted by λUBM . Train a global UBM with the entire

training dataset, by employing the expectation-maximization (EM) algorith-

m [24, 38].

• Subregion UBM training. The speech recognition system is used to align the

speech signals (acoustic features) to the Finals. The aligned speech data are

then assigned to the C speech unit classes according to the definition of {SUC-

c}. A subregion UBM λUBM
c is trained for the c-th speech unit class based on

the global UBM, by employing the MAP algorithm [25] and with the speech

data assigned to SUC-c.

• Subregion speaker model training. For a speaker s, first segment the enroll-

ment speech data into Finals and assign the speech data to the speech unit

classes, by the same way as in the subregion UBM training. Then for each

speech unit class SUC-c, a subregion speaker-dependent GMM λsc is trained by

MAP adaption from the subregion UBM λUBM
c with the assigned enrollment

data.

Speaker Model 

For SUC-1 

Enrollment Speech

For Speaker s

Speech Recognition

Speech For 

SUC-1
…

SUC-1 UBM

 

Speech/SUC 

AlignmentSUC Definition

MAP

SUC-C UBM

 

…

Speech FOR 

SUC-C

Speaker Model 

For SUC-C

Figure 3 Speaker-dependent subregion model training. ‘SUC’ stands for speech unit class.

Note that with the subregion model, the total parameters of a speaker model

would be significantly increased, possibly leading to the problem of data sparsity.

However, the problem is not as that serious as the first glance, because only the

mean vectors are updated and priors and variances are shared across subregions.

Nevertheless, it would be certainly good if some pruning approach is applied to
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remove unrepresentative Gaussian components. We leave this pruning method as

future work.

3.4 Scoring with subregion models

With the speaker-dependent subregion GMMs trained, a test utterance can be s-

cored by scoring on each subregion and taking the average. More sophisticated

approach to fuse the subregion scores is left for future study. Suppose a test ut-

terance contains L Finals according to the decoding result of speech recognition,

and denote the speech unit class of the l-th final by c(l). Further denote the speech

segment of this unit by Xl, and its length is Tl. The score of Xl is measured by the

log likelihood ratio between the subregion speaker-dependent GMM λsc(l) and the

subregion UBM λUBM
c(l) , where s denotes the speaker. This is formulated by:

ϕi,l = log p(Xl|λic(l))− log p(Xl|λubmc(l) )

The score of the entire utterance is computed as the average of the segment-based

scores:

ϕi =

∑L
l=1 ϕi,l∑L
l=1 Tl

.

4 Speaker model synthesis
The subregion modeling presented in the previous section assumes distributes, mod-

els and scores speech signals in appropriate subregions, and therefore does not rely

on the global prior distribution, i.e., {πk} in (1). If all the subregion models are

well trained, then a major difficulty associated with SUSR, i.e., the biased prior

distribution caused by short test utterances, is largely solved.

A potential problem of this approach is that if the enrollment utterance is short

as well, some of the subregion models can be under-estimated, which will lead to

significant performance reduction if the test utterances fall in the data-sparse sub-

regions. The unit clustering approach discussed in the previous section can partially

solve the problem, however it is still problematic if the enrollment utterance is very

short. In this section, we propose a model synthesis approach to to address the

problem, which constructs subregion models for speech unit classes with no or very

limited enrollment data based on data-rich subregion models by a linear transfor-

m. The basic assumption is that the relationship between two subregion models

does not change when adapt speaker-dependent models (subregion GMMs) from

speaker-independent models (subregion UBMs), and the relationship can be repre-

sented by a linear transform. These transforms then can be applied to synthesize

speaker-dependent GMMs for speech unit classes with limited data. In this study,

we employ the maximum likelihood linear regression to train the linear transform.

4.1 Maximum likelihood linear regression

The maximum likelihood linear regression (MLLR) [34, 39] was first proposed by the

Cambridge group to deal with channel mismatch and speaker variability in speech
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recognition. Given a GMM λ = (πk, µk,Σk : k = 1, 2, ...,K) and a speech segment

X, the MLLR seeks for a linear transform L that maximizes the likelihood function

P (X;λ, L) =
∑
k

πkN(X;Lξk,Σk) (5)

where

ξk = [µk,1, ..., µk,D, 1]

is the extended mean vector, and D is the dimension of speech features. L is an

D × (D + 1) transformation matrix. The optimization of the matrix L in the sense

of maximum likelihood gives the following estimation:

Li = κiGi
−1

where Li is the i-th row of L, and κi, Gi
−1 is calculated as:

κi =

K∑
k=1

T∑
t=1

rk(t)
1

σk2(i)
xi(t)ξk

T

Gi =

K∑
k=1

1

σk2(i)
ξkξk

T
T∑

t=1

rk(t)

where t indexes time, xi(t) is the i-th element of the feature vector at time t, and

rk(t) is the posterior probability of x(t) belongs to the k-th Gaussian component.

σk
2(i) is the i-th primary diagonal element of Σk, where we have assumed that Σk

is diagonal.

4.2 Model synthesis based on subregion UBMs

With the MLLR technique, a transforms Li,j can be learned for each subregion

UBM pair (λUBM
i , λUBM

j ). Since the amount of speech data aligned to each speech

unit classes is relatively large when training the subregion UBMs, the transforms

can be easily learned. For example, to learn Li,j , the subregion UBM λUBM
i is used

as the GMM model in (5), and the speech data aligned to the j-th speech unit class

are used as the adaption data X.

Once the transforms are learned, they can be used to synthesize speaker-dependent

subregion GMMs in speaker enrollment. Specifically, the enrollment speech data

is first segmented by the speech recognition system and the speech features are

assigned to the speech unit classes. If a speech unit class j involves sufficient training

data, then the subregion GMM λsj is derived by MAP from the corresponding

subregion UBM λUBM
j , where s denotes the speaker. If the speech unit class involves

little training data, then the subregion GMM is synthesized from a well-trained
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speaker-dependent subregion model, λsi for example. The synthesis is implemented

as a linear transform:

µj,k = Li,j

[
µi,k

1

]
k = 1, 2, ...,K

where k indexes the Gaussian components.

Fig. 4 illustrates the subregion UBM-based model synthesis. Firstly the transform

Li,j is learned to map the subregion UBM λUBM
i to λUBM

j , and then Li,j is used

to synthesize the speaker subregion GMM λsj based on λsi .

Universal 

UBM

SUC-i UBM SUC-j UBM

SUC-i

Speaker GMM

SUC-j

Speaker GMM 

Figure 4 Illustration of model synthesis based on subregion UBMs. ‘SUC’ stands for speech unit
class.

4.3 Model synthesis based on cohort speakers

A particular shortcoming of the subregion UBM-based model synthesis is that the

transforms {Li,j} are speaker independent. This assumption is over strong, as d-

ifferent speakers may exhibit clear different characteristics when moving from one

pronunciation to another. We propose speaker-dependent transforms based on co-

hort sets.

A cohort set [40] is a cluster of speakers that share similar characteristics. Given

a speaker s, there is an individual cohort set H(s, c) for each subregion c, and every

cohort set H(s, c) involves speakers that are the similar to speaker s in the c-th

subregion. The KL divergence is used to measure speaker distance in our study, as

given by (4).

The cohort speaker-based synthesis is illustrated in Fig. 5. Firstly we chose a

universal cohort speaker set H which involved 300 speakers, and each speaker was

modeled by a set of subregion GMMs, defined as {λhc : c = 1, 2, ..., C}, where h
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indexes the speaker and c indexes the subregion. Secondly the MLLR transform

was estimated for each speaker h between each subregion pairs (i, j), denoted by

{Lh
i,j : h ∈ H}.

When registering a speaker s, for each speech unit class c, if the training data

are sufficient, the subregion speaker model λsc is trained directly by MAP with the

corresponding subregion UBM λUBM
c ; otherwise, it is synthesized from subregion

models of his/her cohort speakers. Specifically, specify a data-rich subregion of the

speaker, e.g., subregion c′, and then specify the cohort set H(s, c′) ⊂ H by finding

the similar speakers in the universal cohort set H. The subregion model λsc for

data-sparse subregion c is then synthesized from the data-rich subregion model

of speaker s, i.e., λsc′ and the linear transforms defined by the cohort set, that is

{Lh
c′,c : h ∈ H(s, c′)}. Again, only the mean vectors are synthesized, formulated by:

µs
c,k =

∑
h∈H(s,c′)

Lh
c′,cµ

s
c′,k k = 1, 2, ...,K

where k indexes the Gaussian components.

Universal 

UBM

SUC-i UBM

SUC-i

Speaker GMM

SUC-j UBM

SUC-j

Speaker GMM

SUC-i

Speaker 

Cohort Set

SUC-j

Speaker

Cohort Set

SUC-i
Universal Cohort Set

SUC-j
Universal Cohort Set

Figure 5 The illustration of model synthesis based on cohort speakers. ‘SUC’ stands for speech
unit class.

5 Experiment
5.1 Database

5.1.1 Database for evaluation (SUD12)

There is not a standard database for performance evaluation on text-independent

SUSR tasks. A possible way to construct an SUSR database quickly is to cutting

out words or phrases from a database used for general speaker recognition. This

approach, however, may introduce artifacts when cutting continuous speech sig-

nals. We therefore decided to design and recorded a database that is suitable for



Zhang et al. Page 14 of 20

SUSR research and publish it for research usage[1]. The database was named as

“SUD12” [41, 42], and was designed in the principle to guarantee sufficient IF bal-

ance. In order to focus on short utterances and exclude other factors such as channel

and emotion, the recording was conducted in the same room and with the same mi-

crophone, and the reading style was neural. There are in total 30 male speakers and

30 female speakers, and all the utterances are in Standard Chinese. The sampling

rate is 16 kHz, and the sampling precision is 16 bits.

The enrollment dataset involves 100 Chinese sentences, each of which contains 15

∼ 30 Chinese characters, and the average length of effective speech signals is about

10 seconds. These sentences were selected by the ELFU algorithm [43] from 5, 000

sentences in the news domain taken from the People’s Daily, with the objective

to maximize the di-IF coverage [44]. The IF coverage rate is 100% and the di-IF

coverage rate is 82%, and each IF exists in at least 10 utterances. The statistics of

the di-IF is presented in Table 4.

Table 4 DI-IF statistics of SUD12 enrollment data

di-IF Type Example Number

Initial - Final zh-ong 380

Zero Initial - Final y-uan 36

Final - Initial ong-n 798

Final - Zero Initial ua- y 228

All – 1,442

The test dataset of SUD12 involves 63 short utterances, which covered all the

Finals in Standard Chinese. The lengths of the recordings are not more than 2

seconds. The distribution is shown in Table 5.

Table 5 Length distribution of SUD12 test data

Length (s) Number Percentage (%)

≤ 0.5 38 60.3

0.5 - 1.0 15 23.8

1.0 - 2.0 10 15.9

5.1.2 Database for UBM training (863DB)

The speech data used to train the UBMs and subregion UBMs were chosen from

the 863 Chinese speech corpus [45]. The 863 database was well designed to cover

all the Chinese IFs, and which is particularly suitable to train subregion UBMs for

speech unit classes. All the recordings are at a sampling rate of 16 kHz, and the

sample precision is 16 bits. In this study, we chose 80 males and 80 females from

[1]http://www.cslt.org/resources.php?Public%20data
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the 863 corpus, and for each speaker, there are 75 speech utterances, and the length

of the speech signals is 17 hours in total. This dataset is denoted by 863DB for

convenience.

5.1.3 Database for cohort speaker selection (dEarDB)

In order to construct cohort-based MLLR transforms, we employed another co-

hort speaker database that was recorded by Beijing d-Ear Technologies Co., Ltd.

for Korea Speech Information Technology and Promotion Center. It contains 150

male speakers and 150 female speakers. As SUD12, the recordings are sampled at

16 kHz with 16-bit precision. For each speaker, 100 Standard Chinese sentences

were recorded, and each utterance involves 10 seconds of effective speech signals

approximately. This database is denoted by dEarDB.

5.2 Experimental conditions

The acoustic feature is the conventional 32-dimensional Mel frequency cepstral co-

efficients (MFCC), which involves 16-dimensional static components plus the first

order derivatives. Note that a simple energy-based voice activity detection (VAD)

has been performed before the feature extraction, and the cepstral mean normal-

ization (CMN) [46] is applied as a post-process to reduce the impact of channel

mismatch.

We choose the conventional GMM-UBM approach to construct the baseline sys-

tem. The UBM consists of 1, 024 Gaussian components and is trained with the

863DB. Note that this setting is ‘almost’ optimal in our experiments, i.e., using

more Gaussian components can not improve system performance in any significant

way. The SUD12 is employed to conduct the evaluation. With the enrollment data,

the speaker GMMs are derived from the UBM by MAP. The test result on the

SUD12 test set is 29.78% in EER. This is a reasonable performance for SUSR that

involves short utterances less than 2 seconds [19, 20].

5.3 Subregion modeling

The first experiment investigates the subregion modeling based on speech unit

clustering. Two clustering approaches are studied: the knowledge-based approach

(‘SBM-KW’) and the data-driven approach (‘SBM-DD’). For the knowledge-based

approach, we simply follow the definition of speech unit classes described in [31].

For the data-driven approach, it is necessary to choose an appropriate number of

classes for the clustering algorithm. If the number of classes is small, the subregions

tend to be not homogeneous in terms of prior distributions and so can not deal

with short test utterances, and if the number of classes is large, the problem of data

sparsity is more serious. In order to determine the optimal class number (denoted

by C), the recognition performance with various values of C has been evaluated and

the results are reported in Fig. 6. It can be seen that both too small and too large

values lead to suboptimal performance, and the optimal setting in our experiment

is C=6. Table 6 shows the derived unit classes with this configure. It can be seen

that the clustering result is reasonable at least intuitively.

The results in terms of EER are presented in Table 7, where ‘GMM-UBM’ is

the baseline system, and ‘SBM-KW’ and ‘SBM-DD’ are subregion systems with
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Figure 6 EERs with different numbers of speech unit classes in data-driven clustering.

Table 6 Speech unit classes derived in data-driven way

Class Speech Units

1 a, ao, an, ang, ai, ia, iao

2 e, ie, ai, ei, i, uei, iii

3 iou, ou, u, ong, iou, o

4 v, vn, ve, van, er

5 en, ian, uan, uen, uai, in, ii, ing

6 eng, iang, iong, uang, ueng

the knowledge-based and data-driven speech unit clustering, respectively. ‘EERR’

stands for relative EER reduction. Note that the optimal number of classes (C=6)

has been employed in the data-driven system. For a better understanding of the

performance on various operation points, the DET curves are presented in Fig. 7,

where the horizontal axis represents the false alarm (incorrect acceptance) probabil-

ity and the vertical axis represents the miss probability (incorrect rejection) [47]. It

can be seen that the systems based on subregion modeling outperforms the GMM-

UBM baseline, with either the knowledge-based or data-driven clustering approach.

When comparing the two clustering approaches, it is observed that the data-driven

approach is more effective. This is probably because the data-driven approach takes

into account characteristics of real data, and the balance of data over the resultant

speech unit classes may have lead to more robust subregion models.

One may argue that the comparison in Table 7 is not completely fair, as the

subregion model involves more parameters and thus naturally more powerful. This is

certainly true in general, however in practical systems where training and enrollment

data are limited, more complex models unnecessarily deliver better performance.

In fact in our experiment, it showed that 1024 Gaussian components are sufficient

for the conventional GMM-UBM model to describe the entire acoustic space (at
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least with the current modeling approach based on EM/MAP) and adding more

components did not offer clear advantage. Therefore, the gains obtained by the

subregion modeling should not be attributed to the increased parameters, but the

new modeling method based on subregions that are derived from the external speech

recognition system.

Table 7 Performance of subregion modeling

System EER (%) EERR (%)

GMM-UBM (baseline) 29.78 –

SBM-KW 25.80 13.36

SBM-DD 22.74 23.64
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Figure 7 The DET curves with the GMM-UBM baseline and subregion models.

5.4 Model synthesis

The second experiment studies the MLLR-based model synthesis for speech unit

classes with very little enrollment data. We choose the class definition of Table 6,

and simulate data-sparse speech unit classes by discarding the speech segments

assigned to the class.

5.4.1 Synthesis based on subregion UBMs

We study the model synthesis approach based on subregion UBMs. The results

are shown in Table 8, where the value shown in the element (SBSi,SBBj) is the

EER with the i-th subregion model synthesized from the j-th subregion model. The

column ‘NULL’ presents the results without any model synthesis. It can be seen

that with the model synthesis, the performance is generally improved compared

with the baseline system.
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Table 8 Results with model synthesis based on subregion UBMs

EER (%) SBB1 SBB2 SBB3 SBB4 SBB5 SBB6 NULL

SBS1 – 26.61 27.09 27.08 27.29 26.68 28.94

SBS2 27.12 – 27.06 27.04 27.27 26.63 30.26

SBS3 27.21 27.18 – 27.47 26.62 26.98 29.92

SBS4 27.02 27.56 27.11 – 27.31 26.17 29.55

SBS5 27.10 27.15 26.79 27.11 – 26.69 29.43

SBS6 26.94 27.52 27.01 27.25 27.32 – 29.12

5.4.2 Synthesis based on cohort speakers

As discussed in Section 4, synthesis based on subregion UBMs suffers from the

speaker-independent assumption for MLLR transforms. This experiment studies

the speaker-dependent synthesis approach based on speaker-dependent cohort sets.

For simplicity, we choose the 4-th speech unit class as the data-sparse class and

synthesize the subregion model from the model of the 3-th speech unit class.

Firstly we investigate the impact of the size of the speaker-dependent cohort set.

It was found that the EER first drops as the size of the speaker-dependent cohort

set increases, until the best performance is reached; afterward, the EER starts to

increase as the size of the cohort set increases. In our experiment, the best result is

obtained when the size of the cohort set is set to 20. This optimal value is used in

the rest of the experiments.

Table 9 presents the results with the MLLR-based model synthesis, where the

row ‘NO-MLLR’ present the system without any treatment for data-sparse speech

unit classes. Compared with the case with sufficient enrollment data (‘SMB-DD’),

significant performance reduction is observed. This means that enrollment data s-

parsity indeed causes serious impact for speaker recognition. The row ‘MLLR-UBM’

presents the system with model synthesis based on subregion UBMs, and the row

‘MLLR-COHORT’ presents the system with model synthesis based on speaker-

dependent cohort sets. The values in the ‘EERR’ column are EER reductions com-

pared with the ‘NO-MLLR’ system. It can be found that model synthesis does offer

clear performance improvement in the case with limited enrollment data, and the

cohort-set-based synthesis outperforms the subregion UBM-based synthesis.

Table 9 Results with model synthesis

System EER (%) EERR (%)

SBM-DD 22.74 -

NO-MLLR (baseline) 29.55 -

MLLR-UBM 27.11 8.26

MLLR-COHORT 24.33 17.66

6 Conclusions
In this paper, we propose a subregion modeling approach for text-independent short

utterance speaker recognition. To deal with the problem of data sparsity in enroll-

ment and test, the speech units (IFs) are clustered into speech unit classes in the
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subregion modeling; and to deal with short enrollment utterances, a model synthe-

sis approach based on MLLR has been proposed. The experimental results show

that the proposed subregion modeling approach, plus the data-driven speech unit

clustering, gains significant performance improvement on very short test utterances.

In the case of limited enrollment data, the simulation experiment shows that the

model synthesis approach based on cohort speakers can largely recover the perfor-

mance lost caused by enrollment data sparsity. Future work involves combination

of feature-based and model-based compensations for short utterances, and testing

the proposed approaches in the i-vector framework.
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