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Abstract

Probabilistic linear discriminative analysis (PLDA) is among the most popular
methods that accompany the i-vector model to deliver state-of-the-art
performance for speaker recognition. A potential problem of the PLDA model,
however, is that it essentially assumes strong Gaussian distributions over i-vectors
as well as speaker mean vectors, and the objective function is not directly related
to the goal of the task, e.g., discriminating true speakers and imposters.
We propose a max-margin metric learning approach to solve the problem. It

learns a linear transform with the criterion that target trials and imposter trials
are discriminated from each other by a large margin. Experiments conducted on
the SRE08 core test show that this new approach achieves a performance
comparable to or even better than PLDA, though the scoring is as simple as a
cosine computation.
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1 Introduction
The i-vector model represents the state of the art for modern speaker recognition [1,

2]. By this model, a speech segment is represented as a low-dimensional continuous

vector (i-vector), so that speaker recognition (and other tasks) can be performed

based on the vector representations.

A particular property of the i-vector model is that both the speaker and session

variances are embedded in a single low-dimensional subspace. This is an obvious

advantage since more speaker-related information is retained compared to other

factorization models, e.g., JFA [3]; however, since the speaker-related information

is buried under others, raw i-vectors are not sufficiently discriminative with re-

spect to speakers. In order to improve the discriminative capability of i-vectors for

speaker recognition, various discriminative models have been proposed, including

with-in class covariance normalization (WCCN) [4], nuisance attribute projection

(NAP) [5], linear discriminant analysis (LDA) [6], and its Bayesian counterpart,

probabilistic linear discriminant analysis (PLDA) [7].

Among these models, PLDA plus length normalization is regarded to be the most

effective and delivers state-of-the-art performance. The success of this model is

largely attributed to two factors: one is the training objective function that reduces

the intra-speaker variation while enlarges inter-speaker variation, and the other

is the Gaussian prior it assumes over the speaker mean vectors, which improves

robustness on speakers with little or no training data.

These two factors, however, are also the two main shortcomings of the PLDA

model. As for the objective function, although it encourages discrimination among
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speakers, the discrimination is based on Euclidian distance, which is inconsistent

with the normally used cosine distance that has been demonstrated to be more effec-

tive.[1] Additionally, our task in speaker recognition is to discriminate true speakers

and imposters, which is a binary decision, instead of the multi-class discrimination

in PLDA training. As for the Gaussian assumption, it is often over strong and can

not be held in practice, leading to a less representative model.

Some researchers have noticed these problems. For example, to go beyond the

Gaussian assumption, Kenny proposed a heavy-tailed PLDA [8] which assumes a

non-Gaussian prior over the speaker mean vector. Garcia-Romero et al. found that

length normalization can compensate for the non-Gaussian effect and boost perfor-

mance of Gaussian PLDA to the level of the heavy-tailed PLDA [9]. Burget, Cumani

and colleagues proposed a pair-wised discriminative model that discriminates true

speakers and imposters [10, 11]. In their approach, the model accepts a pair of

i-vectors and predicts the probability that they belong to the same speaker. The

input features of the model are derived from the i-vector pairs according to a form

derived from the PLDA score function (further generalized to any symmetric score

functions in [11]), and the model is trained on i-vector pairs that have been labelled

as identical or different speakers. A particular shortcoming of this approach is that

the feature expansion is highly complex. To solve this problem, a partial discrimi-

native training approach was proposed in [12], which optimizes the discriminative

model on a subspace and does not require any feature expansion. In [13], we pro-

posed a discriminative approach based on deep neural networks (DNN), which holds

the same idea as the pair-wised training, while the features are defined manually.

Although promising, the discriminative approaches mentioned above seem rather

complex. We hope a model as simple as LDA and the inference as simple as a

cosine computation. This paper presents a max-margin metric learning (MMML)

approach, which is a simple linear projection trained with the objective of discrim-

inating true speakers and imposters directly. Once the projection has been learned,

simple cosine distance is sufficient to conduct the scoring. This approach belongs to

the simplest metric learning which has been studied for decades in machine learn-

ing [14, 15], though it has not been extensively studied in speaker recognition.

The rest of this paper is organized as follows. Section 2 discusses some related

work, Section 3 presents the max-margin learning method. The experiments are

presented in Section 4, and Section 5 concludes the paper.

2 Related work
Some of the related works, particularly the pair-wised discriminative model, have

been discussed in the previous section. This section presents some researches on

metric learning for speaker recognition, which are related to our study more directly.

A representative work proposed in [16] employs neighborhood component analysis

(NCA) to learn a projection matrix that minimizes the average leave-one-out k-

nearest neighbor classification error. Our model differs from the NCA approach in

[1]This inconsistency is more serious for the LDA model for which cosine distance

is used in evaluation. For PLDA, the training and evaluation are with the same

Euclidian distance, though cosine distance is potentially more suitable.
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that we use max-margin as the training objective and cosine distance as the distance

measure, which is more suitable for speaker recognition.

The cosine similarity large margin nearest neighborhood (CSLMNN) model pro-

posed in [17] is more relevant to our proposal. The authors formulated the training

task as a semidefinite program (SDP) [18] which moves i-vectors of the same speaker

closer by maximizing the cosine distance among them, while penalizing the criterion

of separating the data of different speakers by a large margin. Our approach uses

a similar objective function, though employs a simpler solver based on stochastic

gradient descendent (SGD), which supports mini-batch learning and accomodates

large scale optimization.

3 Max-margin metric learning
This section presents the max-margin metric learning for speaker recognition. Met-

ric learning has been studied for decades. The simplest form is to learn a linear

projection M so that the distance among the projected data is more suitable for

the task in hand [14]. For speaker recognition, the most popular used distance met-

ric is the cosine distance and the goal is to discriminate true speakers and imposters,

we therefore optimize M to make the projected i-vectors more discriminative for

genuine and counterfeit speakers measured by cosine distance.

Formally, the cosine distance between two i-vectors w1 and w2 is given as follows:

d(w1, w2) =
< w1,w2 >√
||w1||||w2||

.

where < ·, · > denotes inner product, and || · || is the l-2 norm. Further define a con-

trastive triple (w,w+, w−) where the i-vectors w and w+ are from the same speaker,

and w and w− are from different speakers. Letting S denote all the contrastive

triples in a development set, we can define the max-margin objective function that

encourages i-vectors of the same speaker moving close while penalizing i-vectors

from different speakers, given by:

L(M) =
∑

(w,w+,w−)∈S

max{0, δ − d(Mw,Mw+) + d(Mw,Mw−)}

where δ is a hyperparameter that determines the margin. Note that minimizing this

function results in maximizing the margin between i-vectors of the same speaker

and different speakers.

Note that optimizing L(M) directly is often infeasible, because size of S is ex-

ponentially large. We choose the SGD algorithm to solve the problem, where the

training is conducted in a mini-batch style. In a mini-batch t, a number of con-

trastive triples are sampled from S, and these triples are used to calculate the

gradient ∂L
∂M . The projection M is then updated with this gradient as follows:

M t = M t−1 + ε
∂L
∂M
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where M t is the projection matrix at mini-batch t, and ε is a learning rate. This

learning iterates until convergence is obtained. In this study, the Theano pack-

age [19] was used to implement the SGD training.

Once the matrix M has been learned from the development data, an i-vector w

can be projected to its image Mw in the projection space, where true speakers and

imposters are more easily to be discriminated, according to the training objective.

Note that the max-margin metric learning is based on cosine distance, which means

that the simple cosine distance is the theoretically correct choice when scoring trials

in the projection space. This is a big advantage compared to PLDA, which requires

complex matrix computation.
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Figure 1 Illustration of the improved discrimination with the max-margin metric learning.
Each speaker is represented by a shape and a particular color. After applying the projection
that is learned from data, speakers that congest together in the original i-vector space become
separable.

Fig.1 illustrates the concept of the max-margin metric learning for speaker recog-

nition. The i-vectors from the same speaker are labeled as the same color and shape.

In the input space, i-vectors of all the speakers are congested together. After ap-

plying the learned projection, i-vectors of the same speaker are moved closer, while

those of different speakers are moved apart. Note that there is a margin measured

by angle θij between a speaker pair i and j.

4 Experiments
We evaluate the proposed method on the SRE08 core test. This section first presents

the data used and the experimental setup, and then report the results in terms of

equal error rate (EER) and DET curves.

4.1 Database

The Fisher database is used to train the i-vector system. We selected 7196 speak-

ers to train the i-vector model, the LDA model and the PLDA model. The same

data are also used to conduct the metric learning. The NIST SRE 2008 evaluation

database [20] is used as the test set. We selected 1997 female utterances from the

core evaluation data set (short2-short3) and based on that constructed 59343 trials,

including 12159 target trials and 47184 imposter trials.

4.2 Experimental setup

The acoustic feature is 12-dimensional Mel frequency cepstral coefficients (MFCCs)

together with the log energy. The first and second order derivatives are augmented
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to the static feature, resulting in 39-dimensional feature vectors. The UBM involves

2048 Gaussian components and was trained with about 4000 female utterances se-

lected from the Fisher database randomly. The dimensionality of the i-vectors is

400. The LDA model was trained with utterances of 7196 female speakers, again

randomly selected from the Fisher database. The dimensionality of the LDA projec-

tion space is set to 150. For the metric learning, utterances in the Fisher database

are sampled randomly to build the contrastive triples and are used to train the

projection matrix.

4.3 Basic results

We first present the basic results obtained with various discriminative models: raw

i-vectors with cosine scoring (Cosine), LDA, PLDA, max-margin metric learning

(MMML). The test is based on the NIST SRE 2008 core task, which is divided

into 8 test conditions according to the channel, language and accent [20]. The EER

results are reported in Table 1.

It can be observed that the proposed MMML significantly improves the discrimi-

native capability of raw i-vectors, and it outperforms both LDA and PLDA in con-

ditions 1-4 (which takes the major proportion of the test data). In condition 5-8, the

PLDA wins the competition. We attribute this discrepancy to the data imbalance

in the development set: condition 5-8 involves complex patterns (e.g., multilingual

speakers, different accents) that were not involved in the Fisher database that was

used to train the discriminative models. This leads to performance degradation on

these conditions with the MMML approach that we found heavily relies on large

training data. For LDA and PLDA, the Gaussian assumption improves generaliz-

ablility on unseen conditions, thus resulting to superior performance than MMML, a

purely discriminative approach. Nevertheless, since C1-C4 takes a large proportion

of the data, the MMML approach get the best overall performance.

Condition Cosine LDA PLDA MMML
C1 29.34 22.11 18.57 13.65
C2 4.78 1.19 1.79 1.19
C3 29.66 22.65 18.70 14.12
C4 18.92 12.91 14.41 10.66
C5 20.31 14.42 10.58 11.42
C6 12.47 10.75 9.42 11.25
C7 7.73 5.58 4.06 6.08
C8 7.37 5.52 4.21 5.26
Overall 25.58 20.96 19.13 15.64

Table 1 EER results on NIST SRE 2008 core test. The best results are shown in bold face for each
condition .

The DET curves on the overall test condition with the four models are presented

in Fig 2. It is clearly observed that the MMML approach outperforms the other

three.

4.4 Tandem composition

We note that both LDA and MMML learn a linear projection, though they are

based on different learning criteria: LDA uses Fisher discriminant while MMML

uses max-margin. The results in Table 1 show that the max-margin criterion is

clearly superior. An interesting question is if the two criteria can be composed in a

tandem way. The results are shown in Table 2, where the system ‘LDA+MMML’
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Figure 2 The DET curves on the NIST SRE 2008 overall test condition.

involves a 500 × 150 dimensional LDA projection followed by a 150 × 150 dimen-

sional MMML projection, while the system ‘MMML+LDA’ involves a 500 × 150

dimensional MMML and a 150× 150 dimensional LDA. From these results, we find

that the last projection is the most important: if it is an MMML, the performance

is always good. The ‘MMML+LDA’ system seems a bit superior than the original

LDA, which is perhaps because the advantage of the max-margin training has been

consolidated in the process of dimension reduction, which benefits the subsequent

LDA.

Condition LDA MMML MMML + LDA LDA + MMML
C1 22.11 13.65 20.82 14.66
C2 1.19 1.19 1.19 0.90
C3 22.65 14.12 21.49 15.29
C4 12.91 10.66 11.86 10.96
C5 14.42 11.42 13.70 11.66
C6 10.75 11.25 11.03 11.14
C7 5.58 6.08 5.70 5.96
C8 5.52 5.26 4.47 5.26
Overall 20.96 15.64 20.49 15.47

Table 2 EER results with tandem composition.

4.5 Score fusion

The LDA/PLDA model and MMML model are complementary: LDA/PLDA are

generative models and so better generalizable to rare conditions where little train-

ing data are available, whereas MMML is purely discriminative and is superior for

matched conditions. Combing these two types of models may offer additional gains.

We experimented with a simple score fusion approach that linearly interpolates the

scores from LDA/PLDA and MMML. The results are presented in Table 3, where

the interpolation factor for the MMML system is chosen to be 0.4. Compared to

Table 1, we observe that the fusion leads to consistently better performance than

the original LDA and PLDA systems. Interestingly, the performance on condition
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5-8 is also improved, although the MMML approach does not work well individu-

ally in these conditions. Note that the performance degradation on condition 1,3,4

compared to the original MMML system is simply because we used a global in-

terpolation factor. If the factor had been tuned for each condition separately, the

fusion system would obtain the best performance in all the conditions.

Condition LDA + MMML PLDA + MMML
C1 16.45 16.22
C2 0.60 0.90
C3 17.04 16.53
C4 10.06 10.96
C5 11.54 9.38
C6 10.31 9.03
C7 5.32 4.06
C8 5.00 3.68
Overall 17.84 17.67

Table 3 EER results with score fusion, where the interpolation factor for MMML is chosen to be 0.4.

5 Conclusions
In this paper, we proposed a max-margin metric learning approach for speaker

recognition. This approach is a simple linear transforms that is trained with the

criterion of max-margin between true speakers and imposters based on cosine dis-

tance. It is as simple as LDA, but the performance is comparable or even better than

PLDA, especially with large training data on matched conditions. Future work will

investigate metric learning with non-linear transforms, and study better approach

to combining PLDA and MMML.
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