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Abstract

This paper contributes a novel embedding model which measures the probability
of each belief 〈h, r, t,m〉 in a large-scale knowledge repository via simultaneously
learning distributed representations for entities (h and t), relations (r), and the
words in relation mentions (m). It facilitates knowledge population by means of
simple vector operations to discover new beliefs. Given an imperfect belief, we
can not only infer the missing entities, predict the unknown relations, but also tell
the plausibility of the belief, just leveraging the learnt embeddings of remaining
evidences. To demonstrate the scalability and the effectiveness of our model, we
conduct experiments on several large-scale repositories which contain millions of
beliefs from WordNet, Freebase and NELL, and compare it with other
cutting-edge approaches via competing the performances assessed by the tasks of
entity inference, relation prediction and triplet classification with their
respective metrics. Extensive experimental results show that the proposed model
outperforms the state-of-the-arts with significant improvements.

Keywords: Knowledge population; Belief embedding; Entity inference; Relation
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1 Introduction
Information extraction [1, 2] has drawn much attention in recent years because

of the explosive growth in the number of web pages. It is the study of extract-

ing structured beliefs from unstructured online texts to populate knowledge bases.

Thanks to the long-term efforts made by experts, crowdsouring and even machine

learning techniques, several web-scale knowledge repositories, such as Wordnet[1],

Freebase[2] and NELL[3], have been built. Among these knowledge repositories,

WordNet [3] and Freebase [4, 5] follow the RDF format [6] that represents each

belief as a triplet, i.e. 〈head entity, relation, tail entity〉, but NELL [7] goes a step

further to extend each triplet with a relation mention which is a snatch of extract-

ed free text to indicate the corresponding relation. Here we take a belief record-

ed in NELL as an example: 〈city : caroline, citylocatedinstate, stateorprovince :

maryland, county and state of〉, in which county and state of is the mention

between the head entity city : caroline, and the tail entity stateorprovince :

maryland, to indicate the relation citylocatedinstate. In some cases, NELL also

provides the confidence of each belief automatically learnt by machines.

[1]http://wordnet.princeton.edu/
[2]https://www.freebase.com/
[3]http://rtw.ml.cmu.edu/rtw/
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Although we have gathered colossal quantities of beliefs, state-of-the-art work [8]

reports that our knowledge bases are far from complete. For instance, nearly 97%

persons in Freebase have unknown parents. To populate the incomplete knowledge

repositories, scientists either compete the performance of relation extraction be-

tween two named entities on manually annotated text datasets, such as ACE[4] and

MUC[5], or look for effective approaches on improving the accuracy of link pre-

diction within the knowledge graphs constructed by the repositories without using

extra free texts.

Recently, studies on text-based knowledge population have benefited a lot from a

grateful paradigm called distantly supervised relation extraction (DSRE [9]) which

bridges the gap between structured knowledge bases and unstructured free texts. It

alleviates the labor of manual annotation by means of automatically aligning each

triplet 〈h, r, t〉 from knowledge bases to the corresponding relation mention m in

free texts. However the latest research [10] points out that DSRE still suffers from

the problem of sparse and noisy features. Although Fan et al. fix the issue to some

extent via leveraging the low-dimensional matrix factorization, the approach could

not handle large-scale datasets as discussed in their academic article [10].

Fortunately, the knowledge embedding techniques [11, 12] enlighten us to encode

the high-dimensional sparse features into low-dimensional distributed representa-

tions. A simple but effective model is TransE [13] which trains a vector representa-

tion for each entity and relation in large-scale knowledge bases without considering

any text information. Even though Weston et al. [14], Wang et al. [15] and Fan et al.

[16] broaden this field by adding word embeddings, there is still no comprehensive

and elegant model that can integrate such large-scale heterogeneous resources to

satisfy multiple subtasks of knowledge population including entity inference, rela-

tion prediction and triplet classification.

Therefore, we contribute a novel embedding model in this article, which measures

the probability of each belief 〈h, r, t,m〉 in large-scale repositories. It breaks through

the limitation of heterogeneous data, and establishes the connection between the

structured knowledge graph and unstructured free texts. The distributed represen-

tations for entities (h and t), relations (r), as well as the words in relation mentions

(m) are simultaneously learnt within the uniform framework of the probabilistic

belief embedding (PBE) we propose. Then knowledge population can be facilitated

by means of simple vector operations to discover new beliefs. Given an imperfect

belief, we can not only infer the missing entities, predict the unknown relations, but

tell the plausibility of the belief as well, just by means of the learnt vector repre-

sentations of remaining evidences. To prove the effectiveness and the scalability of

PBE, we set up extensive experiments on multiple tasks, including entity inference,

relation prediction and triplet classification, for knowledge population, and evaluate

both our model and the cutting-edge approaches with appropriate metrics on several

well-known large-scale repositories, such as WordNet, Freebase and NELL, which

contain millions of beliefs. Elaborate results of comparison demonstrate that the

proposed model outperforms the state-of-the-arts with significant improvements.

[4]http://www.itl.nist.gov/iad/mig/tests/ace/
[5]http://www.itl.nist.gov/iaui/894.02/relatedprojects/muc/
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2 Related Work
We generally group the studies of knowledge population into three categories accord-

ing to the diverse resources they use: text-based knowledge extraction, repository-

based knowledge inference and hybrid-based knowledge population. As their indi-

vidual names imply, the first research community extracts the relations between two

recognized entities from text corpora, the second takes advantage of the link pat-

terns within a knowledge graph to infer new triplets, and the third party suggests

leveraging both the structure and unstructured information from both the text cor-

pora and the knowledge graph. This paper contributes a novel embedding model

for hybrid-based knowledge population, which stands on the boundary between the

second and the third research communities, and we thus conduct experiments that

mainly compare our approach with several state-of-the-arts mentioned in Section

2.2 and 2.3.

2.1 Text-based knowledge extraction

There exists a huge amount of unstructured electronic texts on the Web. To better

understand these online data, we would like to create an intelligent system that

can annotate all the data with the structure of our concerns. Normally, we concern

more about the knowledge on relations between named entities. So far, off-the-shelf

softwares have been available to help recognize entities in texts, and what we need

to further study is to identify the semantic relations between a pair of the annotated

entities. But before we learn to extract the relations with supervised learning, we

should annotate a portion of the data first, and the paradigms of annotation have

two branches as follows.

2.1.1 Corpus-based extraction

Traditional approaches compete the performance of relation extraction on the public

corpora, including ACE and MUC, which have been annotated by experts already.

They choose different features extracted from the texts, like syntactic [17], kernel

[18] or semantic parser features [19], and adopt discriminative classifiers, such as

Perceptron and Support Vector Machine (SVM) to help predict the relations. There

is a comprehensive survey [2] which shows more details about this branch of research.

2.1.2 Distantly supervised extraction

Mintz et al. [9] firstly adopt Freebase to distantly supervise Wikipedia to auto-

matically generate annotated corpora. The basic alignment assumption is that if a

pair of entities participate in a relation, all sentences that mention these entities

in Wikipedia are labeled by the relation name from Freebase. Then we can extrac-

t a variety of textual features and learn a multi-class logistic regression classifier.

Inspired by multi-instance learning, Riedel et al. [20] relax the strong assumption

and replace all sentences with at least one sentence. Hoffmann et al. [21] point out

that many entity pairs have more than one relation. They extend the multi-instance

learning framework to the multi-label circumstance. Surdeanu et al. [22] propose a

novel approach to multi-instance multi-label learning for relation extraction, which

jointly models all the sentences in texts and all labels in knowledge bases for a

given entity pair. The latest research [10] points out that the distant supervision
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paradigm still suffers from sparse and noisy features. Whereas Fan et al. [10] fix the

issue by means of the low-dimensional matrix factorization, as discussed in their

scholar, the approach could not handle large-scale datasets as well.

2.2 Repository-based knowledge inference

This research community aims at self-inferring new beliefs based on knowledge

repositories without extra texts. It has two categories, namely graph-based inference

models and embedding-based inference models. The principal differences between

them are:

• Symbolic representation v.s. Distributed representation: Graph-based models

regard the entities and relations as atomic elements, and represent them in a

symbolic framework. In contrast, embedding-based models explore distributed

representations via learning a low-dimensional continuous vector representa-

tion for each entity and relation.

• Relation-specific v.s. Open-relation: Graph-based models aim to induce rules

or paths for a specific relation first, and then infer corresponding new beliefs.

On the other hand, embedding-based models encode all relations into the

same embedding space and conduct inference without any restriction on some

specific relation.

2.2.1 Graph-based Inference

Graph-based inference models generally learn the representation for specific rela-

tions from the knowledge graph.

N-FOIL [23] learns first order Horn clause rules to infer new beliefs from the

known ones. So far, it has helped to learn approximately 600 such rules. However,

its ability to perform inference over large-scale knowledge repositories is currently

still very limited.

PRA [24, 25, 26] is a data-driven random walk model which follows the paths from

the head entity to the tail entity on the local graph structure to generate non-linear

feature combinations representing the labeled relation, and uses logistic regression

to select the significant features which contribute to classifying other entity pairs

belonging to the given relation.

2.2.2 Embedding-based Inference

Embedding-based inference models usually design various scoring functions fr(h, t)

to measure the plausibility of a triplet 〈h, r, t〉. The lower the dissimilarity of the

scoring function fr(h, t) is, the higher the compatibility of the triplet will be.

Unstructured [13] is a naive model which exploits the occurrence information of

the head and the tail entities without considering the relation between them. It

defines a scoring function ||h − t||, and this model obviously can not discriminate

a pair of entities involving different relations. Therefore, Unstructured is commonly

regarded as the baseline approach.

Distance Model (SE) [11] uses a pair of matrices (Wrh,Wrt), to characterize a

relation r. The dissimilarity of a triplet is calculated by ||Wrhh−Wrtt||1. As pointed

out by Socher et al. [27], the separating matrices Wrh and Wrt weaken the capability

of capturing correlations between entities and corresponding relations, even though

the model takes the relations into consideration.
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Single Layer Model, proposed by Socher et al. [27] thus aims to alleviate the

shortcomings of the Distance Model by means of the nonlinearity of a single layer

neural network g(Wrhh + Wrtt + br), in which g = tanh. The linear output layer

then gives the scoring function: uT
r g(Wrhh +Wrtt + br).

Bilinear Model [28, 29] is another model that tries to fix the issue of weak inter-

action between the head and tail entities caused by Distance Model with a relation-

specific bilinear form: fr(h, t) = hTWrt.

Neural Tensor Network (NTN) [27] designs a general scoring function: fr(h, t) =

uT
r g(hTWrt+Wrhh+Wrtt+br), which combines the Single Layer Model and the

Bilinear Model. This model is more expressive as the second-order correlations are

also considered into the nonlinear transformation function, but the computational

complexity is rather high.

TransE [13] is a canonical model different from all the other prior arts, which

embeds relations into the same vector space of entities by regarding the rela-

tion r as a translation from h to t, i.e. h + r = t. It works well on the beliefs

with ONE-TO-ONE mapping property but performs badly on multi-mapping be-

liefs. Given a series of facts associated with a ONE-TO-MANY relation r, e.g.

〈h, r, t1〉, 〈h, r, t2〉, ..., 〈h, r, tm〉, TransE tends to represent the embeddings of enti-

ties on the MANY-side extreme close to each other which are hardly discriminated.

TransM [30] leverages the structure of the whole knowledge graph, and adjusts

the learning rate which is specific to each relation based on the multiple mapping

property of the relation.

TransH [31] is the state of the art approach as far as we know. It improves TransE

by modeling a relation as a hyperplane, which makes it more flexible with regard

to modeling beliefs with multi-mapping properties.

2.3 Hybrid-based knowledge population

Due to the diverse feature spaces between unstructured texts and structured beliefs,

the challenge of connecting natural language and knowledge turns out to project the

features into the same space and to merge them together for knowledge population.

Fan et al. [16] have recently proposed that they can jointly learn the embedding

representations for both relations and mentions to predict unknown relations be-

tween entities in NELL. However, the functionality of their latest method limits to

the relation prediction task, as the correlations between entities and relations are

ignored. Therefore, we look forward to a comprehensive model that can simultane-

ously consider entities, relations and even the relation mentions, and can integrate

the heterogeneous resources to support multiple subtasks of knowledge population,

such as entity inference, relation prediction and triplet classification.

3 Theory
The intuition of the subsequent theory is that: Not each belief we have learnt, i.e.

〈head entity, relation, tail entity,mention〉 abbreviated as 〈h, r, t,m〉, is perfect

and complete enough [32]. We thus explore modeling the probability of each belief,

i.e. Pr(h, r, t,m). It is assumed that Pr(h, r, t,m) is collaboratively influenced by

Pr(h|r, t), Pr(t|h, r) and Pr(r|h, t,m), where Pr(h|r, t) stands for the conditional

probability of inferring the head entity h given the relation r and the tail entity t,
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Pr(t|h, r) represents the conditional probability of inferring the tail entity t given

the head entity h and the relation r, and Pr(r|h, t,m) denotes the conditional proba-

bility of predicting the relation r between the head entity h and the tail entity t with

the relation mention m extracted from free texts. Therefore, we define that the prob-

ability of a belief equals to the geometric mean of Pr(h|r, t)Pr(r|h, t,m)Pr(t|h, r)
as shown in the subsequent equation,

Pr(h, r, t,m) = 3
√
Pr(h|r, t)Pr(r|h, t,m)Pr(t|h, r). (1)

Suppose that we have a certain repository ∆, such as WordNet, which contains

thousands of beliefs validated by experts. The learning object is intuitively set to

maximize Lmax, where

Lmax =
∏

〈h,r,t,m〉∈∆

Pr(h, r, t,m). (2)

In most cases, we can automatically build much larger but imperfect knowledge

bases as well via crowdsouring (Freebase) and machine learning techniques (NELL).

However, each belief of NELL has a confidence-weighted score c to indicate its

plausibility to some extent. Therefore, we propose an alternative goal which aims

at minimizing Lmin, in which

Lmin =
∏

〈h,r,t,m,c〉∈∆

1

2
[Pr(h, r, t,m)− c]2. (3)

To facilitate the optimization progress, we prefer using the loglikelihood of Lmax

and Lmin, and the learning targets can be further processed as follows,

arg max
h,r,t,m

logLmax

= arg max
h,r,t,m

∑
〈h,r,t,m〉∈∆

logPr(h, r, t,m)

= arg max
h,r,t,m

∑
〈h,r,t,m〉∈∆

1

3
[logPr(h|r, t) + logPr(r|h, t,m) + logPr(t|h, r)];

(4)

arg min
h,r,t,m

logLmin

= arg min
h,r,t,m

∑
〈h,r,t,m,c〉∈∆

[logPr(h, r, t,m)− log c]2

= arg min
h,r,t,m

∑
〈h,r,t,m,c〉∈∆

1

2
{1

3
[logPr(h|r, t) + logPr(r|h, t,m) + logPr(t|h, r)]− log c}2.

(5)

The advantage of the conversions above is that we can separate the factors out,

compared with Equation (1), and what left for us is to figure out the approaches

on modeling Pr(h|r, t), Pr(r|h, t,m) and Pr(t|h, r).



Fan et al. Page 7 of 20

Figure 1 The whole framework of belief embedding. (a) shows a fragment of knowledge graph;
(c) is a snatch of Wiki which describes the knowledge graph of (a); (b) illustrates how the belief
〈Maple Leafs, home town, Toronto, team based in〉 is projected into the same embedding
space.

Pr(r|h, t,m) leverages the evidences from two different resources to predict the

relation. If the concurrence of the two entities (h and t) in knowledge bases is

independent of the appearance of the relation mention m from free texts, we can

factorize Pr(r|h, t,m) as shown by Equation (6):

Pr(r|h, t,m) = Pr(r|h, t)Pr(r|m). (6)

Then we need to consider formulating Pr(h|r, t), Pr(r|h, t), Pr(t|h, r) and Pr(r|m),

respectively.

Figure 1(a) illustrates the traditional way of recording knowledge as triplets. The

triplets 〈h, r, t〉 can construct a knowledge graph in which entities (h and t) are

nodes and the relation (r) between them is a directed edge from the head entity (h)

to the tail entity (t). This kind of symbolic representation, whilst being very efficient

for storing, is not flexible enough to statistical learning approaches [11]. But once we

project each elements, including entities and relations in the knowledge repository,

into the same embedding space, we can use

D(h, r, t) = −||h + r− t||+ α, (7)

a simple vector operation to measure the distance between h + r and t, in which

h, r and t are encoded in d dimensional vectors, and α is the bias parameter. To

estimate the conditional probability of appearing t given h and r, i.e. Pr(t|h, r),
however, we need to adopt the softmax function as follows,

Pr(t|h, r) =
expD(h,r,t)∑

t′∈Et
expD(h,r,t′)

, (8)

where Et is the set of tail entities which contains all possible entities t′ appearing

in the tail position. Similarly, we can regard Pr(h|r, t) and Pr(r|h, t) as

Pr(h|r, t) =
expD(h,r,t)∑

h′∈Eh
expD(h′,r,t)

(9)
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and

Pr(r|h, t) =
expD(h,r,t)∑

r′∈R expD(h,r′,t)
, (10)

in which Eh is the set of head entities which contains all possible entities h′ appear-

ing in the head position, and R is the set of all candidate relations r′.

One the other hand, Figure 1(c) shows that free texts can provide fruitful contexts

between two recognized entities, but the one-hot feature space is rather high and

sparse. Therefore, we can also project each words in relation mentions into the

same embedding space of entities and relations. To measure the similarity between

the mention m and the corresponding relation r, we adopt inner product of their

embeddings as shown by Equation (11),

F (r,m) = WTφ(m)r + β, (11)

where W is the matrix of Rnv×d containing nv vocabularies with d dimensional

embeddings, φ(m) is the sparse one-hot representation of the mention indicating

absence or presence of words, r ∈ Rd is the embedding of relation r, and β is the

bias parameter. Similar to Equation (8), (9) and (10), the conditional probability

of predicting relation r given mention m, i.e. Pr(r|m) can be defined as,

Pr(r|m) =
expF(r,m)∑

r′∈R expF(r′,m)
. (12)

Above all, we can finally model the probability of a belief via jointly embedding

the entities, relations and even the words in mentions as demonstrated by Figure

1(b).

4 Algorithm
To search for the optimal solutions of Equation (4) and (5), we can use Stochastic

Gradient Descent (SGD) to update the embeddings of entities, relations and words

of mentions in iterative fashion. However, it costs a lot to compute the normaliza-

tion terms in Pr(h|r, t), Pr(r|h, t), Pr(t|h, r) and Pr(r|m) according to the their

definitions made by Equation (8), (9), (10) and (12) respectively. For instance, if

we directly calculate the value of Pr(h|r, t) for just one belief, tens of thousands

expD(h′,r,t) need to be re-valued, as there are tens of thousands candidate entities

h′ in Eh.

Enlightened by the work of Mikolov et al. [33], we have found an efficient approach

that adopts negative sampling technique to approximate the conditional probability

functions, i.e. Equation (8), (9), (10) and (12), by being transformed to binary

classification problems shown as the subsequent equations respectively,

logPr(h|r, t) ≈ logPr(1|h, r, t) +

k∑
i=1

Eh′
iPr(h′∈Eh) logPr(0|h′i, r, t), (13)

logPr(t|h, r) ≈ logPr(1|h, r, t) +

k∑
i=1

Et′iPr(t′∈Et) logPr(0|h, r, t′i), (14)
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logPr(r|h, t) ≈ logPr(1|h, r, t) +

k∑
i=1

Er′iPr(r′∈R) logPr(0|h, r′i, t), (15)

logPr(r|m) ≈ logPr(1|r,m) +

k∑
i=1

Er′iPr(r′∈R) logPr(0|r′i,m), (16)

where we sample k negative beliefs and discriminate them from the positive case. For

the simple binary classification problems mentioned above, we choose the logistic

function with the offset ε shown in Equation (17) to estimate the probability that

the given triplet 〈h, r, t〉 is correct:

Pr(1|h, r, t) =
1

1 + exp−D(h,r,t)
+ ε, (17)

and with the offset η shown in Equation (18) to tell the probability of the occurrence

of r and m:

Pr(1|r,m) =
1

1 + exp−F(r,m)
+ η. (18)

Algorithm 1 : The Learning Algorithm of Probabilistic Belief Embedding
Input:

Training set ∆ = {(h, r, t,m, c)}, entity set E, relation set R, vocabulary set V of relation mentions;
dimension of embeddings d, number of negative samples k, learning rate γ, maximum epoches n;
the bias α and β, the offset ε and η.
/*Initialization*/

1: foreach e ∈ E do
2: e := Uniform(−6√

d
, 6√

d
)

3: end foreach
4: foreach r ∈ R do
5: r := Uniform(−6√

d
, 6√

d
)

6: end foreach
7: foreach v ∈ V do
8: v := Uniform(−6√

d
, 6√

d
)

9: end foreach
/*Training*/

10: i := 0
11: while i < n do
12: foreach 〈h, r, t,m, c〉 ∈ ∆ do
13: foreach j ∈ range(k) do
14: Negative sampling: 〈h′j , r, t,m〉 ∈ ∆′h

/*∆′h is the set of k negative beliefs replacing h*/
15: Negative sampling: 〈h, r′j , t,m〉 ∈ ∆′r

/*∆′r is the set of k negative beliefs replacing r*/
16: Negative sampling: 〈h, r, t′j ,m〉 ∈ ∆′t

/*∆′t is the set of k negative beliefs replacing t*/
17: end foreach
18: Gradient ascent:

∑
h,r,t,h′,r′,t′,v∈m∇ logPr(h, r, t,m) according to Equation (4)

OR
19: Gradient descent:

∑
h,r,t,h′,r′,t′,v∈m∇[logPr(h, r, t,m)− log c]2 according to Equation (5)

/*Updating embeddings of 〈h, r, t,m〉 ∈ ∆; 〈h′, r, t,m〉 ∈ ∆′h; 〈h, r′, t,m〉 ∈
∆′r; 〈h, r, t′,m〉 ∈ ∆′t with γ and the batch gradients derived from Equation (13), (14),
(15) and (16).*/

20: end foreach
21: i++
22: end while
Output:

All the embeddings of h, t, r and v, where h, t ∈ E, r ∈ R and v ∈ V .
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We also display the framework of PBE learning algorithm written in pseudocode

as shown by Algorithm 1.

5 Experiment
Besides its access to the efficient SGD algorithm, the learnt embeddings by PBE can

contribute more effectiveness on multiple subtasks of knowledge population, such

as entity inference, relation prediction, and triplet classification. You can access to

all the datasets through the publish link of OneDrive: http://1drv.ms/1IDwZAR.

• Entity inference: Given a wrecked triplet, like 〈h, r, ?〉 or 〈?, r, t〉, the subtask

works on inferring the missing entities to complete the triplet.

• Relation prediction: Given a pair of entities and the text mentions indicating

the semantic relations between them, i.e. 〈h, ?, t,m〉, this subtask predicts the

best relations of the two entities.

• Triplet classification: It tells whether a completed triplet is correct or not

(〈h, r, t〉? 1 : 0).

5.1 Entity inference

One of the benefits of knowledge embedding is that simple vector operations

can apply to entity inference which contributes to knowledge graph comple-

tion. For example, if we would like to know which entity h ∈ Eh is the exact

head entity given the relation r and the entity t, we just need to compute the

arg maxh∈Eh
Pr(h|r, t), with the help of the entity and relation embeddings. In the

meanwhile, arg maxt∈Et
Pr(t|h, r) will help us to find the best tail entity given the

head entity h and the relation r.

5.1.1 Dataset

To demonstrate the wide adaptability of our approach, we prepare four datasets,

i.e. NELL-50K, WN-100K, FB-500K and NELL-1M from the repositories of

NELL [34], WordNet [3] and Freebase [4, 5], with varies scales as shown by Table 1.

The NELL [35] designed and maintained by Carnegie Mellon University is an out-

standing system which runs 24 hours/day and never stops learning the beliefs on the

Web. Since the starting date of January 2010, it has acquired a knowledge reposito-

ry with over 80 million confidence-weighted beliefs so far. The dataset NELL-50K

we adopt, contains about fifty thousand training beliefs from NELL, and each belief

has been validated to be true. We also extract a much larger one (NELL-1M) with

one million training examples from NELL, where each belief is automatically learnt

by machine and weighted ranging (0.5, 1.0). WN-100K is made by experts from

WordNet, and owns only 11 kinds of relations but much more entities. Therefore,

it is a sparse repository in which fewer entities have connections. The last dataset

(FB-500K[6]) we use was released by Bordes et al. [13]. It is a large but dense,

crowdsourcing dataset extracted from Freebase, in which almost every two entities

have connections, and each belief is a triplet without a confidence score.

Table I shows the statistics of these four datasets. The statistical characteristic of

these datasets are different, which may lead to the variety of tuning parameters.

[6]We change the original name of the dataset (FB15K), so as to follow the naming

conventions in our paper. Related studies on this dataset can be looked up from the

website https://www.hds.utc.fr/everest/doku.php?id=en:transe
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Table 1 Statistics of the datasets used for the entity inference task.

DATASET NELL-50K WN-100K FB-500K NELL-1M

#(ENTITIES) 29,904 38,696 14,951 82,691
#(RELATIONS) 233 11 1,345 218

#(TRAINING EX.) 57,356 112,581 483,142 1,000,000
#(VALIDATING EX.) 10,710 5,218 50,000 24,864

#(TESTING EX.) 10,711 21,088 59,071 24,863

Table 2 Entity inference results on the NELL-50K dataset. We compared our proposed PBE with
the state-of-the-art method TransH and other prior arts mentioned in Section 2.2.

DATASET NELL-50K

METRIC
MEAN RANK MEAN HIT@10

Raw Filter Raw Filter

TransE [13] 2,436 / 29,904 2,426 / 29,904 18.9% 19.6%
TransM [30] 2,296 / 29,904 2,285 / 29,904 20.5% 21.3%
TransH [31] 2,185 / 29,904 2,072 / 29,904 21.6% 28.8%

PBE 2,078 / 29,904 1,996 / 29,904 22.5% 26.4%

5.1.2 Metric

For each testing belief, all the other entities that appear in the training set take

turns to replace the head entity. Then we get a bunch of candidate triplets. The

plausibility of each candidate triplet is firstly computed by various scoring functions,

such as Pr(h|r, t) in PBE, and then sorted in ascending order. Finally, we locate

the ground-truth triplet and record its rank. This whole procedure runs in the same

way when replacing the tail entity, so that we can gain the mean results. We use two

metrics, i.e. Mean Rank and Mean Hit@10 (the proportion of ground truth triplets

that rank in Top 10), to measure the performance. However, the results measured

by those metrics are relatively raw, as the procedure above tends to generate false

negative triplets. In other words, some of the candidate triplets rank rather higher

than the ground truth triplet just because they also appear in the training set. We

thus filter out those triplets to report more reasonable results.

5.1.3 Performance

We compare PBE with the state-of-the-art TransH, TransM, TransE mentioned in

Section 2.2 via evaluating their performances on NELL-50K, WN-100K, FB-

500K, and NELL-1M datasets. We tune the parameters of each previous model

based on the validation set, and select the combination of parameters which leads

to the best performance. To make responsible comparisons between PBE and the

state-of-the-art approach TransH, we request its authors [31] to re-evaluate their

system with all the four datasets and to report the best results. For PBE, we tried

several combinations of parameters: d = {20, 50, 100}, γ = {0.1, 0.05, 0.01, 0.005},
and norm = {L1, L2}, and finally chose d = 50, γ = 0.01, norm = L2 for NELL-

Table 3 Entity inference results on the WN-100K dataset. We compared our proposed PBE with
the state-of-the-art method TransH and other prior arts mentioned in Section 2.2.

DATASET WN-100K

METRIC
MEAN RANK MEAN HIT@10

Raw Filter Raw Filter
TransE [13] 10,623 / 38,696 10,575 / 38,696 3.8% 4.1%
TransM [30] 14,586 / 38,696 13,276 / 38,696 1.8% 2.0%
TransH [31] 12,542 / 38,696 12,463 / 38,696 2.3% 2.6%

PBE 8,462 / 38,696 8,409 / 38,696 9.0% 10.1%
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Table 4 Entity inference results on the FB-500K dataset. We compared our proposed PBE with the
state-of-the-art method TransH and other prior arts mentioned in Section 2.2.

DATASET FB-500K

METRIC
MEAN RANK MEAN HIT@10

Raw Filter Raw Filter

TransE [13] 243 / 14,951 125 / 14,951 34.9% 47.1%
TransM [30] 196 / 14,951 93 / 14,951 44.6% 55.2%
TransH [31] 211 / 14,951 84 / 14,951 42.5% 58.5%

PBE 165 / 14,951 61 / 14,951 50.5% 64.6%

Table 5 Entity inference results on the NELL-1M dataset. We compared our proposed PBE with
the state-of-the-art method TransH and other prior arts mentioned in Section 2.2.

DATASET NELL-1M

METRIC
MEAN RANK MEAN HIT@10

Raw Filter Raw Filter
TransE [13] 29,059 / 82,691 29,052 / 82,691 6.5% 6.6%
TransM [30] 28,435 / 82,691 28,129 / 82,691 5.4% 5.5%
TransH [31] 27,455 / 82,691 26,980 / 82,691 7.8% 8.7%

PBE 7,528 / 82,691 7,485 / 82,691 8.7% 9.0%

50K and WN-100K datasets, and d = 100, γ = 0.01, norm = L2 for FB-500K

and NELL-1M datasets to conduct further experiments.

Table II, III, IV and V demonstrate that PBE outperforms all the state-of-the-

arts, including TransE [13], TransM [30] and TransH [31], and achieves significant

improvements on all datasets. Overall, The relative increments performed by PBE

compared with the best results of prior arts under all metrics are as subsequence,

• NELL-50K: {Mean Rank Raw: 4.9% ⇑, Hit@10 Raw: 4.2% ⇑, Mean Rank

Filter: 3.7% ⇑, Hit@10 Filter: 8.3% ⇓};
• WN-100K: {Mean Rank Raw: 20.3% ⇑, Hit@10 Raw: 136.8% ⇑, Mean Rank

Filter: 20.5% ⇑, Hit@10 Filter: 146.3% ⇑};
• FB-500K: {Mean Rank Raw: 15.8% ⇑, Hit@10 Raw: 27.3% ⇑, Mean Rank

Filter: 13.3% ⇑, Hit@10 Filter: 10.4% ⇑};
• NELL-1M: {Mean Rank Raw: 72.5% ⇑, Hit@10 Raw: 11.5% ⇑, Mean Rank

Filter: 72.2% ⇑, Hit@10 Filter: 3.4% ⇑}

5.2 Relation prediction

The scenario of this subtask is that: given a pair of entities and a short text/mention

indicating the correct relations, we compute the arg maxr∈R Pr(r|h, t)Pr(r|m) to

predict the best relations.

5.2.1 Dataset

We continue using the datasets mentioned in Section 5.1 to compare the perfor-

mances among all the competing methods. But, as the words in relation mentions

are additionally concerned the in this subtask, we also show the vocabulary size of

relation mentions in each dataset in Table VI as follows, except for WN-100K and

FB-500K which only contain triplets as beliefs, and the sizes of their vocabulary

are null.

5.2.2 Metric

We compare the performances between our models and other state-of-the-art ap-

proaches mentioned in Section 2.2 and 2.3, including TransE [13], TransM [30],

TransH [31] and JRME [16], with the metrics as follows,
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Table 6 Statistics of the datasets used for the relation prediction task.

DATASET NELL-50K WN-100K FB-500K NELL-1M

#(ENTITIES) 29,904 38,696 14,951 82,691
#(RELATIONS) 233 11 1,345 218

#(VOCABULARY) 8,948 - - 12,354
#(TRAINING EX.) 57,356 112,581 483,142 1,000,000

#(VALIDATING EX.) 10,710 5,218 50,000 24,864
#(TESTING EX.) 10,711 21,088 59,071 24,863

Table 7 Performance of relation prediction on TransE, TransM, TransH, JRME and PBE evaluated
by the metrics of Average Rank, Hit@10 and Hit@1 with NELL-50K dataset.

DATASET NELL-50K

METRIC AVG. R. HIT@10 HIT@1

TransE [13] 131.8 / 233 16.3% 3.0%
TransM [30] 70.2 / 233 18.9% 4.3%
TransH [31] 46.3 / 233 20.0% 5.1%
JRME [16] 6.2 / 233 87.8% 60.2%

PBE 2.5 / 233 96.6% 78.3%

• Average Rank: Each candidate relation will gain a score calculated by Equa-

tion (7). We sort them in ascent order and compare with the corresponding

ground-truth belief. For each belief in the testing set, we get the rank of the

correct relation. The average rank is an aggregative indicator, to some extent,

to judge the overall performance on relation extraction of an approach.

• Hit@10: Besides the average rank, scientists from the industrials concern more

about the accuracy of extraction when selecting Top10 relations. This metric

shows the proportion of beliefs that we predict the correct relation ranked in

Top10.

• Hit@1: It is a more strict metric that can be referred by automatic system, s-

ince it demonstrates the accuracy when just picking the first predicted relation

in the sorted list.

5.2.3 Performance

Table VII, VIII, IX and X illustrate the results of experiments on relaton prediction

with NELL-50K, WN-100K, FB-500K and NELL-1M datasets, respectively.

All of them show that PBE performs best compared with all the latest approaches

including the state-of-the-art JRME [16]. The relative increments are

• NELL-50K: {Mean Rank: 59.7% ⇑, Hit@10: 10.0% ⇑, Hit@1: 30.0% ⇑};
• WN-100K: { Mean Rank: 41.1% ⇑, Hit@10: 0.1% ⇑, Hit@1: 276.2% ⇑ };
• FB-500K: { Mean Rank: 95.7% ⇑, Hit@10: 148.2% ⇑, Hit@1: 327.6% ⇑ };
• NELL-1M: { Mean Rank: 20.6% ⇑, Hit@10: 3.5% ⇑, Hit@1: 19.3% ⇑ }.

Moreover, the leading results of PBE and JRME on NELL datasets also inspire

us that text mentions can contribute a lot on predicting the correct relations.

Table 8 Performance of relation prediction on TransE, TransM, TransH, JRME and PBE evaluated
by the metrics of Average Rank, Hit@10 and Hit@1 with WN-100K dataset.

DATASET WN-100K

METRIC AVG. R. HIT@10 HIT@1

TransE [13] 3.8 / 11 98.3% 15.1%
TransM [30] 4.6 / 11 97.5% 14.8%
TransH [31] 3.4 / 11 99.0% 19.3%
JRME [16] 3.9 / 11 99.0% 15.9%

PBE 2.0 / 11 99.1% 72.6%
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Table 9 Performance of relation prediction on TransE, TransM, TransH, JRME and PBE evaluated
by the metrics of Average Rank, Hit@10 and Hit@1 with FB-500K dataset.

DATASET FB-500K

METRIC AVG. R. HIT@10 HIT@1

TransE [13] 762.7 / 1,345 7.3% 1.9%
TransM [30] 402.3 / 1,345 13.4% 3.2%
TransH [31] 79.5 / 1,345 39.2% 15.6%
JRME [16] 60.9 / 1,345 27.4% 7.2%

PBE 2.6 / 1,345 97.3% 66.7%

Table 10 Performance of relation prediction on TransE, TransM, TransH, JRME and PBE evaluated
by the metrics of Average Rank, Hit@10 and Hit@1 with NELL-1M dataset.

DATASET NELL-1M

METRIC AVG. R. HIT@10 HIT@1

TransE [13] 70.4 / 218 5.4% 0.4%
TransM [30] 65.5 / 218 18.7% 3.4%
TransH [31] 62.9 / 218 26.8% 5.8%
JRME [16] 7.0 / 218 89.0% 54.5%

PBE 5.8 / 218 92.1% 65.0%

5.3 Triplet classification

Triplet classification is another inference related task proposed by Socher et al. [27]

which focuses on searching a relation-specific threshold σr to identify whether a

triplet 〈h, r, t〉 is plausible. If the probability of a testing triplet (h, r, t) computed

by Pr(h|r, t)Pr(r|h, t)Pr(t|h, r) is below the relation-specific threshold σr, it is

predicted as positive, otherwise negative.

5.3.1 Dataset

It is emphasized that the head or the tail entity can be randomly replaced with

another one to produce a negative training example, but in order to build much

tough validation and testing datasets, we constrain that the picked entity should

once appear at the same position. For example, (Pablo Picaso, nationality, U.S.)

is a potential negative example rather than the obvious nonsense (Pablo Picaso,

nationality, Van Gogh), given a positive triplet (Pablo Picaso, nationality, Spain).

Table XI shows the statistics of the standard datasets that we used for evaluating

models on the triplet classification subtask.

5.3.2 Metric

We use three metrics , i.e. Classification Accuracy, Precision-recall Curve and Area

Under Curve (AUC), to measure the performances among the competing methods.

• Classification Accuracy: We sum up the correctness of each triplet 〈h, r, t〉 via

comparing the probability of the triplet and the relation-specific threshold

σr, which can be searched via maximizing the classification accuracy on the

validation triplets which belong to the relation r.

Table 11 Statistics of the datasets used for the triplet classification task.

DATASET NELL-50K WN-100K FB-500K NELL-1M

#(ENTITIES) 29,904 38,696 14,951 82,691
#(RELATIONS) 233 11 1,345 218

#(TRAINING EX.) 57,356 112,581 483,142 1,000,000
#(TC VALIDATING EX.) 21,420 10,436 100,000 49,728

#(TC TESTING EX.) 21,412 42,176 118,142 49,714
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• Precision-recall Curve: It measures the global performance of classification by

sorting all the triplets based on their estimated probability. We consider the

positive testing triplets and draw the precision-recall curve for each approach.

• Area Under Curve (AUC): The AUC is a commonly used evaluation metric

for binary classification problems like predicting a Buy or Sell decision (binary

decision). The interpretation here is that given a random positive triplet and

a negative triplet, the AUC gives the proportion of the time we guess which is

which correctly. It is less affected by sample balance than accuracy. A perfect

model will score an AUC of 1.0, while random guessing will score an AUC of

around 0.5, a meager 50% chance on each other.

Table 12 The accuracy of triplet classification compared among several latest approaches: PBE,
TransH, TransM and TransE.

DATASET NELL-50K WN-100K FB-500K NELL-1M

METRIC ACC. ACC. ACC. ACC.

TransE [13] 80.5% 64.2% 79.9% 64.0%
TransM [30] 82.0% 57.2% 85.8% 64.8%
TransH [31] 83.6% 59.5% 87.7% 67.0%

PBE 90.2% 67.8% 92.6% 86.2%

Table 13 The AUC of triplet classification compared among several latest approaches: PBE, TransH,
TransM and TransE.

DATASET NELL-50K WN-100K FB-500K NELL-1M

METRIC AUC AUC AUC AUC

TransE [13] 0.623 0.674 0.645 0.547
TransM [30] 0.683 0.610 0.772 0.558
TransH [31] 0.681 0.613 0.744 0.596

PBE 0.942 0.786 0.936 0.786

5.3.3 Performance

We use the best combination of parameter settings in the entity inference task:

d = 100, γ = 0.01, norm = L2 to generate the entity and relation embeddings,

and learn the best classification threshold σr for each relation r. Compared with

several of the latest approaches, i.e. TransH [31], TransM [30] and TransE [13], the

proposed PBE approach still outperforms them within the metrics of Classification

Accuracy (ACC.) and Area Under Curve (AUC), as shown in Table XII and XIII.

We also draw the precision-recall curves which indicate the capability of global

discrimination by ranking the distance of all the testing triplets, and Figure 2,

3, 4 and 5 can intuitively show that PBE performs much better than the other

approaches.

Compared with several of the latest approaches, i.e. TransH [31], TransM [30] and

TransE [13], the proposed PBE approach outperforms with the relative improve-

ments that

• NELL-50K: {Accuracy: 7.9% ⇑, AUC: 37.9% ⇑};
• WN-100K: {Accuracy: 5.6% ⇑, AUC: 16.6% ⇑};
• FB-500K: {Accuracy: 5.6% ⇑, AUC: 21.2% ⇑};
• NELL-1M: {Accuracy: 28.6% ⇑, AUC: 31.8% ⇑}.
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Figure 2 The precision-recall curves for triplet classification of PBE, TransH, TransM and
TransE on NELL-50K dataset.

6 Conclusion
We challenge the problem of embedding beliefs which both contain structured

knowledge and unstructured free texts and propose an elegant probabilistic model

to tackle this issue at the first attempt by measuring the probability of a given belief

〈h, r, t,m〉. To efficiently learn the embeddings for each entity, relation, and word in

mentions, we also adopt the negative sampling technique to transform the original

model and display the algorithm based on stochastic gradient descend (SGD) to

search the optimal solution. Extensive experiments on knowledge population in-

cluding entity inference, relation prediction and triplet classification show that our

approach achieves significant improvement on three large-scale repositories, com-

pared with state-of-the-art methods.

We are pleased to see further improvements of the proposed model, which leaves

open promising directions for the future work, such as taking advantage of the

probabilistic belief embeddings to enhance the studies of text summarization and

open-domain question answering.
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Figure 3 The precision-recall curves for triplet classification of PBE, TransH, TransM and
TransE on WN-100K dataset.
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Figure 4 The precision-recall curves for triplet classification of PBE, TransH, TransM and
TransE on FB-500K dataset.
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Figure 5 The precision-recall curves for triplet classification of PBE, TransH, TransM and
TransE on NELL-1M dataset.
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2014, Québec City, Québec, Canada., 2014, pp. 1112–1119.

32. Miao Fan, Qiang Zhou, and Thomas Fang Zheng, “Learning embedding representations for knowledge

inference on imperfect and incomplete repositories,” arXiv preprint arXiv:1503.08155, 2015.

33. Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean, “Distributed representations of

words and phrases and their compositionality,” in Advances in Neural Information Processing Systems 26,

C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, Eds., pp. 3111–3119. 2013.

34. Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka Jr., and Tom M. Mitchell,

“Toward an architecture for never-ending language learning,” in Proceedings of the Twenty-Fourth Conference

on Artificial Intelligence (AAAI 2010), 2010.

35. T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel,

J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi,

B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, and J. Welling, “Never-ending

learning,” in Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15), 2015.


