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Abstract

Recent research shows that deep neural networks (DNNs) can be used to
extract deep speaker vectors (d-vectors) that preserve speaker characteristics and
can be used in speaker verification. This new method has been tested on
text-dependent speaker verification tasks, and improvement was reported when
combined with the conventional i-vector method.

This paper extends the d-vector approach to semi text-independent speaker
verification tasks, i.e., the text of the speech is in a limited set of short phrases.
We explore various settings of the DNN structure used for d-vector extraction,
and present a phone-dependent training which employs the posterior features
obtained from an ASR system. The experimental results show that it is possible
to apply d-vectors on semi text-independent speaker recognition, and the
phone-dependent training improves system performance.
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1 Introduction
Speaker verification, also known as voiceprint recognition, is an important biometric

authentication technique that has been widely used to verify speakers’ identities.

According to the text that are allowed to speak in enrollment and test, speaker ver-

ification systems can be categorized into either text-dependent or text-independent.

While a text-dependent system requires the same words/sentences to be spoken in

enrollment and test, a text-independent system permits any words to speak. This

paper focuses on a semi text-independent scenario where the words for enrollment

and test are constrained in a limited set of short phrases, e.g., ‘turn on the radio’.

With this limitation, people can speak different sentences in enrollment and test

while the system performance is not significantly deteriorated, which makes the

system more acceptable in practice.

Most of the successful approaches to speaker verification are based on generative

models and with unsupervised learning, e.g., the famous Gaussian mixture model-

universal background model (GMM-UBM) framework [9]. A number of advanced

models have been proposed based on the GMM-UBM architecture, among which

the i-vector model [4] [5] is perhaps the most successful. Despite the impressive

success, the GMM-UBM model and the subsequent i-vector model share the intrinsic

disadvantage of all unsupervised learning methods: the goal of the model training

is to describe the distributions of the acoustic features, instead of discriminating

speakers.
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This problem can be solved in two directions. The first direction is to employ

various discriminative models to enhance the generative framework. For example,

the SVM model for GMM-UBMs [1], and the PLDA model for i-vectors [3]. All these

approaches provide significant improvement over the baseline. Another direction is

to look for more discriminative features, i.e., the features that are more sensitive to

speaker change and largely invariant to change of other irrelevant factors, such as

phone contents and channels [7]. However, the improvement obtained by the ‘feature

engineering’ is much less significant compared to the achievements obtained by the

discriminative models such as SVM and PLDA. A possible reason is that most of

the features are human-crafted and thus tend to be suboptimal in practical usage.

Recent research on deep learning offers a new idea of ‘feature learning’. It has been

shown that with a deep neural network (DNN), task-oriented features can be learned

layer by layer from very raw features. For example in automatic speech recognition

(ASR), phone-discriminative features can be learned from spectrum or filter bank

energies (Fbanks). The learned features are very powerful and have defeated the

conventional feature based on Mel frequency cepstral coefficients (MFCCs) that has

dominated in ASR for several decades [8].

This favorable property of DNNs in learning task-oriented features can be utilized

to learn speaker-discriminative features as well. A recent study shows that this is

possible at least in text-dependent tasks [2]. The authors constructed a DNN model

and set the training objective as to discriminate a set of speakers, and for each

frame, the speaker-discriminative features were read from the activations of the last

hidden layer. They tested the method on a foot-print text-dependent speaker verifi-

cation task (only a short phrase ‘ok, google’). The experimental results showed that

reasonable performance can be achieved with the DNN-based features, although it

is still difficult to compete with the i-vector baseline.

In this paper, we extend the application of the DNN-based feature learning ap-

proach to semi text-independent tasks, and present a phone-dependent training

which involves phone posteriors obtained from an ASR system in the training.

The experimental results show that the DNN-based feature learning works well on

text-independent tasks, actually even better than on text-dependent tasks, and the

phone-dependent training offers marginal but consistent gains.

The rest of this paper is organized as follows. Section 2 describes the related work,

and Section 3 presents the DNN-based speaker feature learning. The experiments

are presented in Section 4, and Section 5 concludes the paper.

2 Related work
This paper follows the work in [2]. The difference is that we extend the application

of the DNN-based feature learning approach to semi text-independent tasks, and

we introduce a phone-dependent training. Due to the mismatched content of the

enrollment and test speech, our task is more challenging.

The DNN model has been employed in speaker verification in other ways. For

example, in [6], DNNs trained for ASR were used to replace the UBM model to

derive the acoustic statistics for i-vector model training. In [10], a DNN was used to

replace PLDA to improve discriminative capability of i-vectors. All these methods

rely on the generative framework, i.e., the i-vector model. The DNN-based feature
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learning presented in this paper is purely discriminative, without any generative

model involved.

3 DNN-based feature learning
This section presents the DNN-based feature learning. We first describe the main

structure of the model and the learning process, and propose the phone-dependent

learning. Finally the difference between the i-vector approach and the DNN-based

approach is discussed.

3.1 DNN-based feature extraction

It is well-known that DNNs can learn task-oriented features from raw features layer

by layer. This property has been employed in ASR where phone-discriminative

features are learned from very low-level features such as Fbanks or even spectrum [8].

It has been shown that with a well-trained DNN, variations irrelevant to the learning

task are gradually eliminated when the input feature is propagated through the

DNN structure layer by layer. This feature learning is so powerful that in ASR, the

primary Fbank feature has defeated the MFCC feature that was carefully designed

by people and has dominated in ASR for several decades.

This property can be also employed to learn speaker-discriminative features. Ac-

tually researchers have put much effort in looking for features that are more dis-

criminative for speakers [7], but the effort is mostly vain and the MFCC is still the

most popular choice. The success of DNNs in ASR suggests a new direction that

speaker-discriminative features can be learned from data instead of crafted by hand.

The learning can be easily done and the process is rather similar as in ASR, with

the only difference that in speaker verification, the learning goal is to discriminate

different speakers.

Fbanks
(40*21 dims)

Fully-connected sigmoid hidden layers.

d-vector is the averaged activations from 
the last hidden layers

Output layer is removed in 
enrollment and evaluation.

P(spk1)

P(spk2)

P(spkN)

Figure 1 The DNN structure used for learning speaker-discriminative features.

Figure 1 presents the DNN structure used for the speaker-discriminative feature

learning. Following the convention of ASR, the input layer involves a window of

40-dimensional Fbanks. In this work, the window size is set to 21, which was found
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to be optimal in our work. There are 4 hidden layers, and each consists of 200 units.

The units of the output layer correspond to the speakers in the training data, and

the number is 80 in our experiment. The 1-hot encoding scheme is used to label

the target, and the training criterion is set to cross entropy. The learning rate is

set to 0.008 at the beginning, and is halved whenever no improvement on a cross-

validation (CV) set is found. The training process stops when the learning rate is

too small and the improvement on the CV set is too marginal.

Once the DNN has been trained successfully, the speaker-discriminative features

can be read from any hidden layer. More the layer is close to the output, more the

features are speaker-discriminative. Our experiments show that features extracted

from the last hidden layer perform the best, which is similar to the observation

in [2].

In the test phase, the features are extracted for all the frames of the given ut-

terance, and the features are averaged to form a speaker vector. Following the

nomenclature in [2], we call this speaker vector as ‘d-vector’. Similar to i-vectors, a

d-vector represents the speaker identity of an utterance in the speaker space. The

same methods used for i-vectors can be used for d-vectors to conduct the test, for

example by computing the cosine distance or applying PLDA.

3.2 Phone-dependent training

A potential problem of the DNN-based speaker-discriminative feature learning de-

scribed in the previous section is that it is a ‘blind learning’, i.e., the features are

learned from raw data without any prior information. This means that the learning

purely relies on the complex deep structure of the DNN model and a large amount

of data to discover speaker-discriminative patterns. If the training data is abun-

dant, this is often not a problem; however in tasks with a limited amount of data,

for instance the semi text-independent task in our hand, this blind learning tends

to be difficult because there are too many speaker-irrelevant variations involved in

the raw data, particularly phone contents.

A possible solution is to inform the DNN which phone the current input frame

belongs to. This can be simply achieved by adding a phone indicator in the DNN

input. However, it is often not easy to get the phone alignment for the speech data.

An alternative to the phone indicator is a vector of phone posterior probabilities,

which can be easily obtained from any phone discriminant model. In this work, we

choose a DNN model that was trained for an ASR system to produce the phone

posteriors. Figure 2 illustrates the DNN structure with the phone posterior vector

involved in the input. The training process for the new structure does not change.

We note that this phone-dependent training is more important for text-

independent recognition. For the text-dependent recognition, the acoustic features

are limited in a small set of phones, and so involving the phone information in the

training does not help much.

3.3 Comparison between i-vectors and d-vectors

The two kinds of speaker vectors, the d-vector and the i-vector, are fundamentally

different. I-vectors are based on a linear Gaussian model, for which the learning is

unsupervised and the learning criterion is maximum likelihood on acoustic features.
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Figure 2 The DNN structure used for phone-dependent training.

In contrast, d-vectors are based on neural networks, for which the learning is su-

pervised, and the learning criterion is maximum discrimination for speakers. This

difference in model structures and learning methods leads to significant different

properties of these two vectors.

First, the i-vector is ‘descriptive’, which represents the speaker by construct-

ing a GMM (derived from the i-vector) to fit the acoustic features. In contrast,

the d-vector is ‘discriminative’, which represents the speaker by removing speaker-

irrelevant variance.

Second, the i-vector can be regarded as a ‘global’ speaker description, which is

inferred from ‘all’ the frames of an utterance; however the d-vector is a ‘local’

description, which is inferred from ‘each’ frame, and only the context information

is used in the inference. This means that the d-vector tends to be more superior

with a short utterance, while the i-vector tends to perform better with a relative

long utterance.

Third, the i-vector approach more relies on the enrollment data to form a reason-

able distribution that can be used to discriminate different speakers; whereas the

d-vector approach more relies on the ‘universal’ data to learn speaker-discriminative

features. This means that a large amount of training data (labelled with speakers)

is much more important and useful for the d-vector approach.

4 Experiments
4.1 Database

The experiments are performed on a database that involves a limited set of short

phrases. The entire database contains recordings of 10 short phrases from 100 speak-

ers (gender balanced), and each phrase contains 2 ∼ 5 Chinese characters. For each

speaker, every phrase is recorded 15 times, amounting to 150 utterances per speaker.

The training set involves 80 randomly selected speakers, which results in 12000

utterances in total. To prevent over-fitting, a cross-validation (CV) set contain-

ing 1000 utterances is selected from the training data, and the remaining 11000

utterances are used for model training, including the DNN model in the d-vector
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approach, and the UBM, the T matrix, the LDA and PLDA model in the i-vector

approach.

The evaluation set consists of the remaining 20 speakers. In the text-dependent

experiment, the evaluation is performed for each particular phrase; and in the semi

text-independent experiment, all the utterances in the evaluation set (3000 in total)

are cross evaluated, resulting in 223500 target trials and 4275000 non-target trials.

4.2 Text-dependent recognition

The first experiment investigates the performance of the d-vector approach on text-

dependent speaker verification tasks, and compare it to the i-vector approach. A

similar work has been reported in [2], here we just reproduce that work and propose

some improvement by leveraging text-independent data.

For clearance, we report the results on two randomly selected phrases, denoted

by P1 and P2 respectively. For each phrase, the corresponding utterances are se-

lected from the training set to train the i-vector system and the d-vector system

respectively, and the corresponding utterances in the evaluation set are selected to

perform the test. This means that the training data for each phrase consists of 1200

utterances, and the test consists of 300 utterances. For the i-vector system, the

number of Gaussian mixtures of the UBM is 64, and the i-vector dimension is 200.

These values have been chosen to optimize the performance. The DNN architecture

for the d-vector system has been shown in Section 3. For a fair comparison, the

dimension of the d-vector is set to 200 as well.

The tests are based on three metrics: the basic cosine distance, the cosine distance

after LDA reduction, and the PLDA score. The dimension of the LDA projection

space is set to 80. Table 1 reports the results in terms of equal error rate (EER). It

can be seen that the d-vector system obtains reasonable performance, however, the

results are much worse than those with the i-vector system. Similar observations

have been reported in [2].

EER%
Phrase Cosine LDA PLDA

i-vector P1 4.91 4.62 4.05
d-vector P1 12.05 9.52 10.76
i-vector P2 3.86 3.10 2.76
d-vector P2 8.86 7.00 8.90

Table 1 EER results on the text-dependent recognition task. The results with two phrases are
reported.

As discussed in Section 3, the d-vector approach relies on a large amount of data

to learn speaker-discriminative features, and the learning is largely independent

of speech content. This property can be used to improve the d-vector system, by

borrowing data from text-independent tasks to train the DNN. The results are re-

ported in Table 2. It can be observed that with more training data, the performance

is generally improved, despite that the extra data are recordings of other phrases.

Another observation is that with more training data, the PLDA model tend to be

less effective. This can be possibly explained by the fact that the d-vectors are de-

rived from activations of neural network units and so probably does not fit a linear

Gaussian model that PLDA assumes.
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EER%
Phrase Training Cosine LDA PLDA
P1 P1 12.05 9.52 10.76
P1 P1,P2 11.57 8.29 10.57
P1 P1,P2,...,P15 11.14 8.14 11.00
P2 P2 8.86 7.00 8.90
P2 P1,P2 7.95 5.81 6.91
P2 P1,P2,...,P15 8.33 5.43 7.95

Table 2 EER results of the d-vector system trained with additional text-independent data.

4.3 Semi text-independent recognition

This experiment examines the d-vector approach on the semi text-independent task.

Again we compare it with the i-vector system. The dimension of both the i-vector

and the d-vector is fixed to 200. In order to have the two systems involve the same

amount of parameters, the number of Gaussian components of the i-vector system

is set to 128. Again, the dimension of the LDA projection space is set to 80. For

the d-vector system, all the utterances in the training dataset are used to train the

DNN model.

cosine LDA PLDA NLDR
i-vector 19.32 11.09 8.70 -
d-vector 13.58 13.07 15.45 12.79

Table 3 EER results on the semi text-independent recognition task. ‘NLDR’ stands for
‘non-linear dimension reduction’.

The results of the two systems are reported in Table 3. It can be observed that with

the simple cosine distance, the d-vector system outperforms the i-vector system in

a significant way. This demonstrates that the discriminatively learned d-vectors are

highly effective and more discriminative for speakers when compared with the gener-

atively learned i-vectors. However, when the discriminative normalization methods

(LDA and PLDA) are employed, the performance of the i-vector system is signif-

icantly improved and better than that of the d-vector system. The discriminative

methods contribute very little to the d-vector system. This is not supervising, as

the d-vectors themselves have been discriminative already.

Nevertheless, the slight improvement with LDA suggests that there is some re-

dundancy in the 200 dimensions of the d-vectors, and so dimension reduction might

be helpful. Motivated by this idea, a new hidden layer with a small number of units

is inserted into the DNN structure, as shown in Figure 3. The dimension of the new

layer is set to 100, which is the best choice in our test. Compared to LDA, this

approach can be regarded as a non-linear dimension reduction (NLDR) conducted

within the DNN structure. Additional performance is achieved with this method,

as has been shown in the last column of Table 3.

4.4 Phone-dependent training

In this experiment, the phone posteriors are included in the input of the DNN

structure, as shown in Figure 2. The phone posteriors are produced by a DNN

model that was trained for ASR with a Chinese database consisting of 6000 hours

of speech data. The phone set consists of 66 toneless initial and finals in Chinese, plus

the silence phone. The results are shown in the third row of Table 4. It can be seen

that the phone-dependent training leads to marginal but consistent performance

improvement for the d-vector system. The NLDR approach is also applied, and an

additional gain is obtained.
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(40*21 dims)

Fully-connected sigmoid hidden layers.

d-vector is the averaged activations 
from the last hidden layers

Output layer is removed in 
enrollment and evaluation.
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Dimension 
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Figure 3 The DNN structure with non-linear dimension reduction.

PDTR cosine LDA PLDA NLDR
i-vector - 19.32 11.09 8.70 -
d-vector - 13.58 13.07 15.45 12.79
d-vector + 13.21 12.76 15.48 12.55

Table 4 EER results on the semi text-independent recognition task with phone-dependent
training. ‘PDTR’ stands for ‘phone-dependent training’, and ‘NLDR’ stands for ‘non-linear
dimension reduction’.

4.5 Combination system

Following [2], we combine the best i-vector system (PLDA) and the best d-vector

system (NLDR with phone-dependent training). The combination is simply done

by interpolating the scores obtained from the two systems: αsiv + (1−α)sdv, where

siv and sdv are scores from the i-vector and d-vector systems respectively, and α is

the interpolation factor.

The EER results with various α are drawn in Figure 4, and the best result is given

in Table 5. It can be seen that the combination leads to the best performance we

can obtain so far.

EER%
i-vector PLDA 8.70
d-vector PDTR+NLDR 12.55
combination 7.14

Table 5 Performance of combination of the i-vector and d-vector system by score fusion.
‘NLDR’ stands for ‘non-linear dimension reduction’.

5 Conclusions
This paper investigated the DNN-based feature leaning for speaker recognition, and

studied the performance of this approach on a semi text-independent speaker verifi-

cation task. The experimental results demonstrated that this approach (d-vectors)

can offer reasonable performance, and outperformed the i-vector baseline with sim-

ple cosine distance. However, when discriminative normalization methods such as

LDA and PLDA are applied, the i-vector approach exhibits better performance.

Although it has not beat the i-vector approach at present, the d-vector approach is

quite promising. We argue that an obvious advantage of the i-vector system is that it

smartly combines the power of generative models (GMM) and discriminative models
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Figure 4 The EER results of the d-vector and i-vector combination system. The x-axis
represents the interpolation weight α.

(LDA, PLDA), which the current d-vector approach has to learn. Nevertheless, as

has been demonstrated in this paper, the d-vector approach is potential in learning

speaker-discriminative features with large amounts of universal data, which is a big

advantage compared to the i-vector approach for which the universal data is used

for inferring the speaker space only. Another merit with the d-vector approach is

the local learning property, which enables speaker characters being identified with

very short utterances. This is impossible for the i-vector approach which requires

much more data to infer the speaker characters.

The future work involves investigating strong statistical models for d-vectors. The

current average-based accumulation is too simple to model the statistical property

of speakers’ behavior, which is a major shortage compared to the i-vector model.

Another work is to utilize more universal data to learn speaker-discriminative fea-

tures, and test on large scale text-independent tasks.
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