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Music Removal for ASR

• Why ?
• Mixing music in speech usually causes significant 

performance reduction in ASR

• How ?
• Traditional approaches focus on music/voice separation:

• Robust PCA

• non-negative matrix factorization (NMF)

• Robust NMF



Music Removal for ASR

• Disadvantage of traditional methods
• Rely on human-discovered music patterns and 

properties.

• Have difficulty in dealing with the complexity of music 
signals of different genres.

Figure 2 Spectrogram of “abnormal” music
(Jay Chow Shuangjiegun)

Figure 1 Spectrogram of “normal” music 
(Chopin Nocturne No.9 Op2)
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Denoising Auto Encoder(DAE)

• Learning based approach:
• Use Denoising Autoencoder (DAE) to learn the patterns 

from data.

Figure 3 Structure of DAE



Speech recognition system

Figure 4 Flow chart of ASR system



Convolutional Denoising Auto 
Encoder (CDAE)
• In order to utilize prior knowledge of music signals 

• Entropy

• Repeating patterns

• Harmonic structures

Figure 5 Spectrogram of piano solo
(Beethoven Moonlight Chapter 3)

Figure 6 Spectrogram of violin solo 
(Theme From Schindler’s List)
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Convolutional Denoising Auto 
Encoder (CDAE)

Figure 7 Structure of convolutional neural network (CNN)



Results
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Chart I
WER with CDAE-based music removal

Clean Piano Violin Symphony Rap Piano2
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CDAE compared with DAE
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Music removal across languages

• Music is assumed to be language-independent.

• We assume that music-removal model can be 
trained and applied across languages.
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Chart III
WER of CDAE-based Music Removal on Chinese ASR system

Baseline(Without music removal) Aurora4(English) 863(Chinese) Aurora4+863(Multi-lingual)



Conclusions

• CDAE can learn music patterns and remove them 
from music-embedded speech signals.

• CDAE model is more powerful than DAE model.

• Music removal model can be applied across 
languages.

• A general music-removal model is possible by 
learning with multilingual data embedded with 
multiple music.



Future work

• Investigate more complex music types.

• Study the multiple music embedding which 
involves several music signals in the same speech 
segment.
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