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Music Removal for ASR

e Why ?
* Mixing music in speech usually causes significant
performance reduction in ASR

* How ?
* Traditional approaches focus on music/voice separation:
* Robust PCA

* non-negative matrix factorization (NMF)
* Robust NMF



Music Removal for ASR

* Disadvantage of traditional methods

e Rely on human-discovered music patterns and
properties.

* Have difficulty in dealing with the complexity of music
signals of different genres.

Figure 1 Spectrogram of “normal” music Figure 2 Spectrogram of “abnormal” music
(Chopin Nocturne No.9 Op2) (Jay Chow Shuangjiegun)
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Denoising Auto Encoder(DAE)

* Learning based approach:

e Use Denoising Autoencoder (DAE) to learn the patterns
from data.

Figure 3 Structure of DAE



Speech recognition system
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Figure 4 Flow chart of ASR system




Convolutional Denoising Auto
Encoder (CDAE)

* In order to utilize prior knowledge of music signals
* Entropy
* Repeating patterns
* Harmonic structures
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Figure 5 Spectrogram of piano solo Figure 6 Spectrogram of violin solo
(Beethoven Moonlight Chapter 3) (Theme From Schindler’s List)
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Convolutional Denoising Auto
Encoder (CDAE)
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Figure 7 Structure of convolutional neural network (CNN)



Results

Chart |
WER with CDAE-based music removal
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Results

Chart I
CDAE compared with DAE
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Music removal across languages

* Music is assumed to be language-independent.

* We assume that music-removal model can be
trained and applied across languages.



Results

Chart Il
WER of CDAE-based Music Removal on Chinese ASR system
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Conclusions

e CDAE can learn music patterns and remove them
from music-embedded speech signals.

* CDAE model is more powerful than DAE model.

* Music removal model can be applied across
languages.

* A general music-removal model is possible by
learning with multilingual data embedded with
multiple music.



Future work

* |Investigate more complex music types.

e Study the multiple music embedding which
involves several music signals in the same speech
segment.
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