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Abstract

In this work, we propose an end-to-end approach to the
language identification (LID) problem based on Convolutional
Deep Neural Networks (CDNNSs). The use of CDNNs is mainly
motivated by the ability they have shown when modeling speech
signals, and their relatively low-cost with respect to other deep
architectures in terms of number of free parameters. We evalu-
ate different configurations in a subset of 8 languages within the
NIST Language Recognition Evaluation 2009 Voice of Amer-
ica (VOA) dataset, for the task of short test durations (segments
up to 3 seconds of speech). The proposed CDNN-based sys-
tems achieve comparable performances to our baseline i-vector
system, while reducing drastically the number of parameters
to tune (at least 100 times fewer parameters). Then, we com-
bine these CDNN-based systems and the i-vector baseline with
a simple fusion at score level. This combination outperforms
our best standalone system (up to 11% of relative improvement
in terms of EER).

1. Introduction

The Language Identification (LID) task consists of automati-
cally recognizing which language is being spoken in a given
utterance [1]. LID is daily used in different and varied applica-
tions such as interaction with devices in different languages [2]
or in emergency call centers, where the rapid detection of the
speaker language might be critical.

In the last years, the LID problem has been addressed fol-
lowing the i-vector scheme [3], which is also within state-of-
the-art approaches for speaker recognition tasks [4]. How-
ever, the performance of i-vector based approaches significantly
decreases when dealing with short test utterances [5]. Re-
cently, systems based on deep learning approaches such as feed
forward Deep Neural Networks (DNNs) or Long Short-Term
Memory (LSTM) Recurrent Neural Networks (RNNs) have
demonstrated to outperform i-vector based approaches [6].

However, DNN-based systems need huge training datasets
in order to be successful [5]. Furthermore, their training is com-
putationally expensive and they still have a large number of pa-
rameters to be trained.

In this work, we propose the use of Convolutional Deep
Neural Networks (CDNNs) since they have several advantages
over other architectures. Their structure based on sharing
weights among hidden units in order to extract the same fea-
tures from different locations, reduces drastically the number of
parameters to tune, in comparison with other deep architectures.
Moreover, they have been succesfully applied to other related
tasks [7] [8], and, recently, to LID [9] [10]. Unlike [9], where
a CDNN trained for automatic speech recognition was used to
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replace the UBM in an i-vector based approach for LID, we pro-
pose using CDNNSs as an end-to-end system. Our CDNN-based
systems are trained from the begining to discriminate among a
set of given languages and, thus, there is no need of a previous
speech recognition stage.

We evaluate the performance of different CDNN-based sys-
tems on a subset of the NIST Language Recognition Evaluation
2009 (LRE’09), testing on short test utterances. We compare
our proposal with an i-vector based system. The CDNN sys-
tems obtain comparable results to the i-vector approach, having
much less free parameters. Further, the performance improves
when a simple fusion is performed.

The rest of this paper is organized as follows. In Section
2 we describe the proposed CDNN systems and how we apply
them to LID. The experimental framework used in this work
is presented in Section 3. Section 4 is devoted to describe the
obtained results both for individual and fusion systems. Finally,
Section 5 presents the conclusions of this work.

2. Convolutional Networks for LID
2.1. Convolutional Network Architecture

Convolutional neural networks are a type of neural network
where each hidden layer is split into two parts: convolutional
layer and subsampling layer [11].

The convolutional layer performs feature extraction. Each
unit in this layer is connected to a local subset of units in the
hidden layer below, according to a given filter shape. It com-
putes its activation by convolving the input with a linear filter
(weights, W), adding a bias term (b) and applying a non-linear
transformation (in our case, tanh):

h = tanh(W * z + b)

Moreover, groups of these units spatially related share their
parameters and form what is called a feature map, since they
extract the same features from different locations in the input.
This sharing of parameters also decreases the number of free
parameters of the whole network.

On the other hand, subsampling layer reduces the size of
the representations obtained by convolutional layers. In our
case, this phase is based on partitioning the input into non-
overlapping regions (according to a given pool shape) and
choosing the maximum activation of each region (max-pooling).
This subsampling also makes the network invariant to small
translations and rotations [12].

This structure makes convolutional networks easier to train
than other DNNs, by using well-known supervised algorithms
such as gradient descent [11]. Moreover, they are smaller in
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Figure 1: Representation of architecture used in the experimental part of this work with three hidden layers of 5, 15 and 20 filters
respectively, and to discriminate among 8 languages. The other models used have the same structure but varying the number of filters
in each layer.

terms of number of free parameters than the i-vector systems Configuration  Development Data
used typically for the problem of language identification.

Figure 1 shows an example of structure used in the experi-
mental part of this work.

ID # Filters/Layer ~ Train ~ Validation

ConvNet 1 [20, 30, 50] ~178h ~31h
ConvNet 2 [5, 15, 20] ~178h ~31h
ConvNet 3 [5, 15, 20] ~356h ~63h
ConvNet 4 [5, 15, 20] ~534h ~63h

2.2. Proposed System

The details of the CDNN-based systems are as follows. We ConvNet 5 [10, 20, 30] ~356h ~63h

used speech segments of 3 seconds, which correspond with 300 ConvNet 6 [10, 20, 30] ~534h ~63h
frames, since we applied windows of 20 ms of duration with 10

ms of overlap. Then, we represented each frame with a vec- Table 1: Configuration parameters for the developed models.

tor of 56 MFCC-SDCs (with the configuration 7-1-3-7) [13]
and fed the network with a 2-dimensional matrix of dimensions

56 x 300, corresponding with a given speech segment of 3 sec- computes a softmax function according to the following expres-
onds long. Finally, we normalized the input to have zero mean sion:

and unit variance for each coefficient over the whole training

set. Moreover, in order to suppress silences, we used a voice oWiztbi
activity detector based on energy. This last filtering process P(Y =ilz, W,b) = softmaz; Wz +b) =

. W.xz+b:
made test segments contain less than 3 seconds of actual speech, Zj e

which was a problem since the network input dimensions are
constant. It was solved by applying a right padding by using the
first frames of the segment to fit this requirement.

We built different networks depending on the number of
filters (feature maps) considered for each hidden layer, which
is related to the idea of how many different features are to be
extracted in each layer. However, all of them have 3 hidden
layers composed of the two stages mentioned in Section 2.1:
convolution and subsampling. They have also in common the
shape of the linear filters (5 x 5 for the first two hidden layers,
and 11 x 11 for the third one) and the max-pooling regions (with
a shape of 2 x 2 in the first two hidden layers, and 1 x 62 in

where ¢ is a certain language, and W and b are the parame-
ters of the model (weights and bias, respectively).

Then, the network outputs the probability that the test seg-
ment belongs to a certain language, among the languages in-
volved in the experiment.

Regarding the training of the network, the algorithm that
was used is the stochastic gradient descent algorithm with a
learning rate of 0.1 and based on minibatches of 500 samples.
The cost function that the algorithm tries to minimize is the neg-
ative log-likelihood, defined as follows:

the third one in order to have a single value as output of the last |D| o
hidden layer). NLL(9,D) = — Z log P(Y = y(l)|$(z), 0)
We also evaluated different amounts of data to develop each i=1
network in order to study its influence in the performance (178h, where D is the dataset, 6 represents the parameters of the
356h or 534h). These training sets are composed of approxi- model (0 = W,b, weights and bias respectively), 2+ is an
mately thfe same number of hours for each language involved in example and y@ its corresponding label, and P is defined as
the experiment. the output of the softmax function defined above.
The differences among the structures are summarized in Ta- Also, an “early stopping” technique was used during the
ble 1. training in order to avoid overfiting, so, each iteration, the per-
The output layer consists of a fully-connected layer that formance of the model was evaluated in a validation set, and
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if the improvements over that set were not considered relevant,
the training stopped.

All this development was done by using Python and, specif-
ically, Theano [14], following the ideas of [15].

3. Experimental Framework
3.1. Dataset Description

The database used to perform the experiments was that pro-
vided by NIST in the Language Recognition Evaluation 2009
(LRE’09).

LRE’(09 database includes data coming from different au-
dio sources: conversational telephone speech (CTS), used in
previous evaluations, and broadcast data containing telephone
and non-telephone speech. That broadcast data consist of two
corpora from Voice of America (VOA) broadcast in multiple
languages (VOA2 and VOA3). Some language labels of VOA2
might be erroneous since they have not been audited. More de-
tails can be found in [16].

Both language and audio source labels were distributed to
participants. In this work, just data belonging to VOA were con-
sidered in order to avoid unbalanced data from different sources
(CTS and VOA).

The database includes data from 40 languages (23 target
and 17 out-of-set). From them, we selected 8 languages as in
[6]: US English (Eng), Spanish (Spa), Dari (Dar), French (Fre),
Pashto (Pas), Russian (Rus), Urdu (Urd) and Chinese Mandarin
(Chi).

Regarding evaluation data, segments of 3, 10 and 30 second
of duration from CTS and broadcast speech data were available
to test the developed systems. However, the experiments shown
in this paper are focused on segments of 3 seconds (short dura-
tion), where i-vector systems obtain lower performances. Our
test dataset includes 2942 test segments from the 8 languages
mentioned before. Thus, we perform a closed-set task, without
out-of-set test utterances.

3.2. Baseline i-vector System

In order to have a baseline to compare with, an i-vector based
system was evaluated on the same test dataset.

The i-vector system is based on GMMs where a Total Vari-
ability (TV) modelling strategy is employed in order to model
both language and session variability [17]. First, an Universal
Background Model (UBM) composed of 1024 Gaussian com-
ponents is trained from MFCC-SDC parameterization of the au-
dio, with the configuration 7-1-3-7. Then, Baum-Welch statis-
tics are computed over this UBM, and a TV space of 400 di-
mension is derived from them by using PCA followed by 10
EM iterations. All the process, from the parameterization of the
audio to the i-vector computation has been done using Kaldi
[18].

Regarding the classification stage, we used the classical co-
sine scoring scheme. Thus, given a test utterance i-vector w,
and the i-vector model wy, (computed as the mean i-vector from
all the utterances of the language L), the cosine similarity is
computed as follows:

(wva>

Sy, = o WLI
S o [[we |

The classical Linear Discriminant Analysis (LDA) classifi-
cation scheme gave us slightly lower performance than just the
cosine scoring scheme in our experiments. This could be ex-
plained because we just used 8 languages in our experiments.
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Performance
1D Size EER.vg (%) Cavg
i-vector ~23M 16.94 0.1535
ConvNet 1 ~198k 22.14 0.2406
ConvNet 2 ~39k 25.90 0.2700
ConvNet 3 ~39k 24.69 0.2616
ConvNet 4 ~39k 23.48 0.2461
ConvNet 5 ~78k 21.60 0.2282
ConvNet 6 ~78k 21.11 0.2293
AllConvNets - 17.93 0.1836
ConvNet 6+i-vector - 15.96 0.1433
AllConvNets+i-vector - 15.04 0.1360

Table 2: Individual and combined systems performance.

Thus, if we used LDA, just 7 dimensions would remain from
the i-vectors, and we could be losing information useful for dis-
crimination.

3.3. Performance Evaluation

The performance of the systems was evaluated according to two
different metrics.

The first one is the cost measure Cg. 4, defined in the NIST
LRE’09 evaluation plan [16]. This measure takes into account
the false alarm and false rejection probabilities and the cost of a
bad classification of the speech segment. Therefore, it evaluates
the ability of the system for discrimination and calibration (i.e.,
the capacity of setting optimal thresholds).

Secondly, the classical Equal Error Rate (K E'R, in %) was
considered. As we deal with a multiclass task in this work,
we compute the £ E R for each individual system, and average
them to obtain an FER,.4 as a metric for the performance of
the whole system.

Furthermore, we present the confusion matrix of our best
system, typically used when assessing the performance in a
multiclass classification task. With this matrix, we show the
discriminative capacity of the system and the confusion among
all the languages involved in our experiments.

4. Results

The experiments presented in this work are based on the 8 lan-
guages mentioned in Section 3.1. For the experiments based
on CDNNs, we split the development data into two disjoint
datasets (training and validation) in order to perform training
and model selection with different data. The amount of data
used for each CDNN-based system can be seen in Table 1.

The performances of standalone systems and combined sys-
tems are summarized in Table 2. In this table we can also see
the size (in terms of number of parameters to be trained) of each
system.

In order to calibrate and combine the systems, we use mul-
ticlass logistic regression from FoCal toolkit [19]. Its training
was done using the evaluation scores themselves.

4.1. Individual Systems

As we can see in Table 2, the performance of the i-vector system
is better than the one obtained by the standalone CDNN-based
systems. However, the size of these models is between ~100
and ~600 times smaller with respect to the number of parame-
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Figure 2: Influence of the amount of data used for training in
the performance of the system (in terms of £ E R,.4). Note that
the three convolutional networks shown in this graphic have the
same topology (ConvNet 2, 3 and 4, with [5, 15, 20] filters per
layer).

ters that need to be tuned in the i-vector system. In our case, the
baseline i-vector system presented in Section 3.2 has ~23M of
parameters, which is given by the number of Gaussian compo-
nents of the UBM (1024), the feature space dimensionality (56
MFCC-SDCs) and the i-vector dimensions (400). In contrast,
our biggest CDNN-based model is ~100 times smaller (~198k
parameters). Moreover, the datasets used to train the CDNN
systems are actually smaller than the one composed of 200h per
language that we used to train the i-vector system. Therefore,
the CDNN systems extract useful discriminant information even
with less data and much less parameters. If we compare the dif-
ferent CDNN-based systems, we can see that the more data we
introduce, the better the performance (see Figure 2).

Furthermore, increasing the number of filters per layer (and,
thus, the size of the model) yields better performance even if the
amount of data used to train remains constant (compare Con-
vNet 3 and 5 or ConvNet 4 and 6 in Table 1).

It should be hightlighted that increasing the number of pa-
rameters or the amount of data means higher cost in terms of
time and memory needed to train the CDNN-based systems, al-
though it is slightly noticeable in the testing stage. Nevertheless,
their size is much smaller than the i-vector approach and they
need less resources to be stored and tested.

4.2. Fusion Systems

The first kind of fusion we present in this work is the combina-
tion of the CDNN models. As it is shown in Table 2 (see All-
ConvNets row), with this fusion we obtain comparable perfor-
mance to i-vector system (17.93% of EE R4 versus 16.94%),
and a ~15% of relative improvement (in £ F R.,4) with respect
to the best standalone CDNN system (ConvNet 6). From this re-
sult, we can draw the conclusion that even using the same type
of architecture, varying just the number of filters per layer and
the training dataset, CDNNs are able to extract complementary
information.

On the other hand, when fusing the best CDNN system with
the i-vector system, the combination outperforms our baseline
by ~6% in terms of FER,.,4. Moreover, when fusing all the
CDNN models with the baseline i-vector system, this relative
improvement reaches up to a 11%. The confusion matrix for
this last combination can be seen in Figure 3.
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Eng 32 28 30
Spa 18 15 9
Dar 22 18 11
Fre 21 12 13

Pas| 20
Rus| 22 9 2 16
Urd| 15 13 16 12
Chi| 22 7 8 15
Eng Spa Dar Fre Pas Rus Urd Chi

Figure 3: Confusion matrix corresponding to the fusion of all
CDNN-based systems and our baseline i-vector system.

5. Conclusions

In this work, we proposed an end-to-end CDNN-based ap-
proach to the problem of LID and we tested it in segments of
less than 3 seconds of speech (short duration).

The proposed models are lighter (in terms of number of
parameters) than traditional approaches based on i-vectors and
other deep learning architectures. Thus, using at least 100 times
fewer parameters, our proposed systems obtain performances
comparable to the i-vector baseline system.

Furthermore, by combining our CDNN-based systems and
the baseline i-vector system, we obtain a relative performance
improvement of ~11%. This means our proposed systems ex-
tract information that complements the one extracted by our i-
vector system.
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