

vMF-SNE: Embedding for Spherical Data

Mian Wang & Dong Wang*

CSLT/RIIT, Tsinghua University

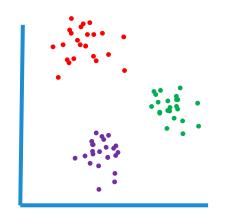
wangdong99@mails.tsinghua.edu.cn

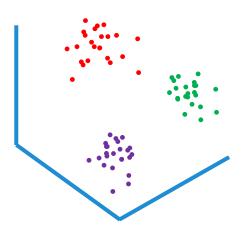
Presented by Zhiyuan Tang

ICASSP, 20-25 March 2016, Shanghai, China

- 1 Introduction
- 2 From *t-SNE* to *vMF-SNE*
- 3 Experiments
- 4 Conclusions

HIGH-DIMENSIONAL DATA





Data Embedding

For data lying on or near a linear subspace

```
Principal Component Analysis (PCA),
Multi-Dimensional Scaling (MDS), etc.
```

- For data within non-linear manifolds
 - Derive the global non-linear structure from local proximity
 Isometric Feature Mapping (ISOMAP),
 self-organizing map (SOM),
 generative topographic mapping (GTM),
 local linear embedding (LLE),
 Stochastic Neighbor Embedding (SNE),
 UNI-SNE
 t-SNE
 - Derive the global non-linear structure involves kernel methods kernel PCA,
 colored maximum variance unfolding (CMVU), etc.

Data Embedding

For data lying on or near a linear subspace

```
Principal Component Analysis (PCA),
Multi-Dimensional Scaling (MDS), etc.
```

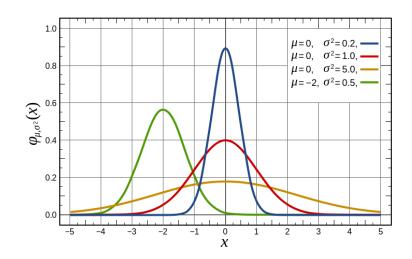
- For data within non-linear manifolds
 - Derive the global non-linear structure from local proximity
 Isometric Feature Mapping (ISOMAP),
 self-organizing map (SOM),
 generative topographic mapping (GTM),
 local linear embedding (LLE),
 Stochastic Neighbor Embedding (SNE),
 UNI-SNE
 t-SNE
 - Derive the global non-linear structure involves kernel methods kernel PCA,
 colored maximum variance unfolding (CMVU), etc.

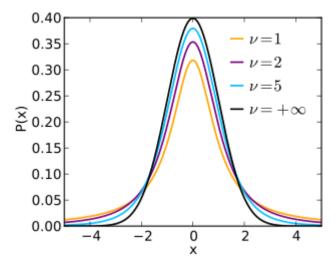
Hinton, Geoffrey E., and Sam T. Roweis. "Stochastic neighbor embedding." Advances in neural information processing systems. 2002.

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

 Local Proximity in embedding data Student t-distribution

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi} \Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}},$$

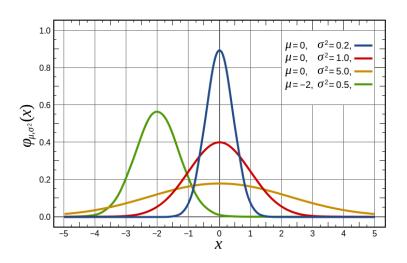


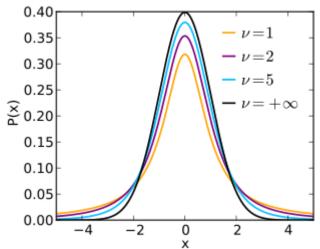


Optimization (KL divergence, gradient descendant)

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi} \Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}},$$





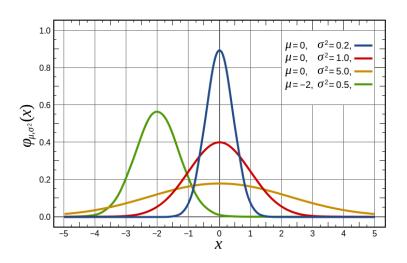
Optimization (KL divergence, gradient descendant)

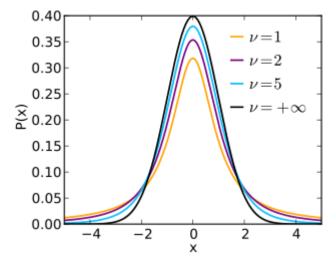
Afraid of data not Gaussian, such as spherical data! topic vectors, i-vectors ...

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

 Local Proximity in embedding data Student t-distribution

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi} \Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}},$$





Optimization (KL divergence, gradient descendant)

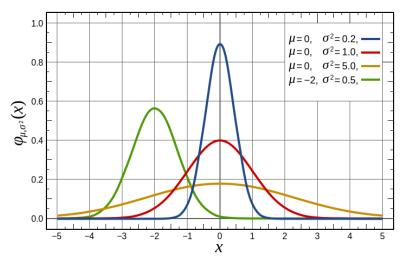
This paper will handle spherical data, motivated by t-SNE!

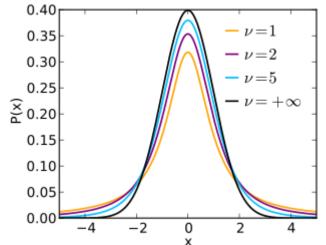
- 1 Introduction
- 2 From *t-SNE* to *vMF-SNE*
- 3 Experiments
- 4 Conclusions

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

 Local Proximity in embedding data Student t-distribution

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi} \Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}},$$





Optimization (KL divergence, gradient descendant)

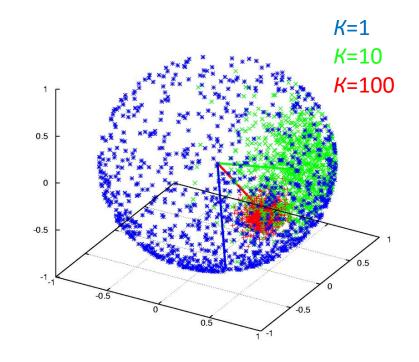
vMF-SNE

 Local Proximity in original data vMF distribution

$$f_p(\mathbf{x}; \boldsymbol{\mu}, \kappa) = C_p(\kappa) \exp\left(\kappa \boldsymbol{\mu}^T \mathbf{x}\right)$$

 Local Proximity in embedding data vMF distribution

$$f_p(\mathbf{x}; \boldsymbol{\mu}, \kappa) = C_p(\kappa) \exp\left(\kappa \boldsymbol{\mu}^T \mathbf{x}\right)$$

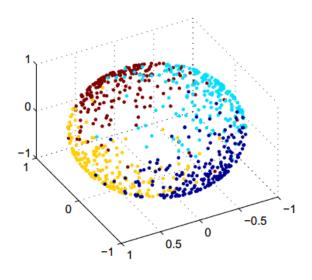


• Optimization (KL divergence, gradient descendant)

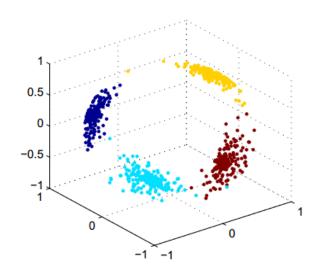
Algorithm 1 vMF-SNE **Require:** Input: $\{x_i; ||x_i|| = 1, i = 1, ..., N\}$: data to embed \mathcal{P} : perplexity in the original space κ : concentration parameter in the embedding space T: number of iterations η : learning rate Output: $\{y_i; ||y_i|| = 1, i = 1, ..., N\}$: data embeddings **Procedure:** 1: compute $\{\kappa_i\}$ according to Eq. (9) 2: compute p_{ij} according to Eq. (4), and set $p_{ii} = 0$ 3: randomly initialize $\{y_i\}$ 4: **for** t = 1 to T **do** EM process compute q_{ij} according to Eq. (5) 5: for i=1 to N do $\delta_i = \frac{\partial \mathcal{L}}{\partial u_i}$ according to Eq. (8) $y_i = y_i + \eta \delta_i$ end for 10: end for

Visualization test

• vMF-SNE on simulation data



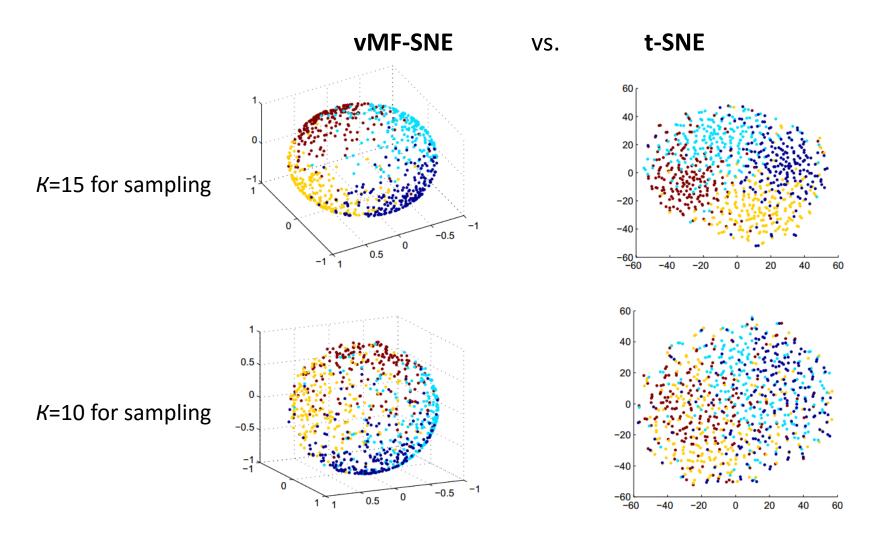
K = **15** for sampling data



K = **40** for sampling data

- 1 Introduction
- 2 From *t-SNE* to *vMF-SNE*
- 3 Experiments
- 4 Conclusions

Visualization



Entropy and accuracy

- vMF-SNE vs. t-SNE, quantitative criteria
 - Entropy

$$H(i) = \sum_{j=1}^{k} c(i,j) ln(c(i,j))$$

c(i,j) is the proportion of the data points generated from the j-th cluster but are classified as the i-th cluster in the embedding space.

- Accuracy the proportion of the data that are correctly classified.

TABLE I: Results of Entropy and Accuracy

4 Clusters	Entropy		Accuracy	
κ	t-SNE	vMF-SNE	t-SNE	vMF-SNE
10	0.6556	0.5922	42%	64.13%
20	0.4725	0.4187	85.38%	92.63%
30	0.3804	0.3676	97.38%	98.5%
40	0.3485	0.3466	99.75%	99.95%
16 Clusters	Entropy		Accuracy	
10	0.3152	0.2975	15.5%	16.88%
20	0.2812	0.2608	38.25%	40.75%
30	0.2312	0.2383	68.25%	55.13%
40	0.1964	0.2187	91.25%	60.63%

- 1 Introduction
- 2 From *t-SNE* to *vMF-SNE*
- 3 Experiments
- 4 Conclusions

Conclusions

- vMF-SNE assumes vMF distributions and cosine similarities with the original data and the embeddings.
- Compared with t-SNE, vMF-SNE is suitable for spherical data embedding.
- Future work involves studying long-tail vMF distributions to handle crowding data, as t-SNE does with the Student t-distribution.
- Tool for vMF-SNE from http://cslt.riit.tsinghua.edu.cn/resources.php?Public%20tools

