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Abstract

PLDA is a popular normalization approach for the i-vector model, and it has
delivered state-of-the-art performance in speaker verification. However, PLDA
training requires a large amount of labelled development data, which is highly
expensive in most cases. We present a cheap PLDA training approach, which
assumes that speakers in the same session can be easily separated, and speakers
in different sessions are simply different. This results in ‘weak labels’ which are
not fully accurate but cheap, leading to a weak PLDA training.

Our experimental results on real-life large-scale telephony customer service
achieves demonstrated that the weak training can offer good performance when
human-labelled data are limited. More interestingly, the weak training can be
employed as a discriminative adaptation approach, which is more efficient than
the prevailing unsupervised method when human-labelled data are insufficient.
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1 Introduction
The i-vector model plus various normalization approaches offers the standard frame-

work for modern speaker verification [1, 2, 3, 4]. Basically, the i-vector model uses

a Gaussian mixture model (GMM) or a deep neural network (DNN) to collect the

Baum-Welch statistics, based on which an affine transform is learned so that speech

segments can be projected onto low-dimensional continuous vectors (i-vectors). Al-

though it is possible to discriminate speaker i-vectors using simple cosine distance,

normalization or discriminative techniques are often preferred, since they promote

speaker-related information and thus bring significant performance improvement.

Probabilistic linear discriminant analysis (PLDA) is one of the most popular nor-

malization methods. It assumes that i-vectors of a particular speaker subject to

a Gaussian distribution, with the mean vector following a normal distribution [2].

Combined with length normalization, PLDA has delivered state-of-the-art perfor-

mance in various test benchmarks [4].

PLDA Training generally requires a large amount of human-labelled data, usually

thousands of speakers, each with multiple sessions. For example, in the two popular

development databases Fisher [5] and Switchboard [6], there are 12, 399 and 543

speakers, respectively. In practice, labelling such a large amount of data by human

is very challenging: it is not only because discriminating two voice-similar speakers is

difficult, but also because identifying the speaker of an utterance among thousands

of people is nearly impossible. Therefore, it is quite appealing if the data can be

utilized directly without human labeling.
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A popular approach towards this direction is various unsupervised adaptation

techniques. For example, Wang et al. [7] proposed a domain-adaptation approach

based on maximum likelihood linear transformation (MLLT), and Rahman et al. [8]

proposed a dataset-invariant covariance normalization approach that normalized

i-vectors by a global covariance matrix computed from both in-domain and out-

domain data. This is equal to project i-vectors of in-domain and out-domain s-

peakers onto a dataset-invariant space, so that the PLDA model trained with the

projected i-vectors is more robust against data mismatch.

Another approach to utilizing unlabelled data is to produce labels for these data

automatically. These labels may be not as accurate as human labels but still convey

some speaker-related information, and therefore can be used as supplemental ma-

terials in PLDA training. Most importantly, these labels are very cheap, allowing

vast unlabelled data to be used. We call these cheap labels ‘weak labels’, and the

PLDA training based on these labels ‘weak training’. Correspondingly, the PLDA

training with human labels is called ‘strong training’.

Some research has been conducted on weak PLDA training. Garcia-Romero et

al. [9] proposed a semi-supervised learning approach that used an out-of-domain

PLDA to cluster in-domain data, based on which the PLDA projection matrix was

adapted. Villalba and colleagues [10] proposed a variational Bayesian method where

the unknown label of an unlabelled utterance was treated as a latent variable. This

can be seen as an extension of the semi-supervised method. Liu et al. [11] proposed

an approach that treated unlabelled data as from a special universal speaker, and

the PLDA was trained with the universal speaker involved.

This paper proposes a new knowledge-based weak PLDA training approach that

produces cheap labels based on some prior knowledge. For example, in the tele-

phony customer service domain, the prior knowledge is that speakers in different

sessions are almost different, and therefore the session ID can be used to label s-

peakers. These labels are certainly noisy (therefore weak) since the knowledge is

not absolutely correct, but they do convey some valuable information that can be

used to enhance PLDA. Our experiments on a real-life large-scale customer service

archive demonstrated that the knowledge-based weak training is rather effective

in domains where the knowledge is ‘sufficiently correct’ and can provide perfor-

mance improvement, and even outperform the unsupervised adaptation approach

in scenarios when human-labelled data are limited.

The structure of this paper is as follows: Section 2 presents details of weak training,

and Section 3 presents the experiments. Finally Section 4 concludes the paper and

discusses some future work.

2 Knowledge-based weak PLDA training
In this section, the conventional PLDA model is briefly reviewed, and then our

proposed knowledge-based weak training approach is presented. We also discuss

the relation of our proposal methods and some others.

2.1 PLDA model

PLDA is an extension of the linear discriminative analysis (LDA), by introducing

a Gaussian prior on the mean i-vector of each speaker. Combined with length nor-

malization, PLDA has delivered state-of-the-art performance in speaker verification.
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Letting wij denote the i-vector of the jth utterance (session) of the ith speaker, the

PLDA model can be formulated as follows:

wij = u + V yi + zij ,

where u is the speaker-independent global factor, yi and zij represent the speaker-

level and utterance-level factors, respectively. The matrix V consists of the basis of

the speaker subspace. Note that both yi and zij are assumed to follow a diagonal

full-rank Gaussian prior. The model can be trained via an EM algorithm [12],

and the similarity of two i-vectors can be computed as the ratio of the evidence

(likelihood) of two hypothesises: whether or not the two i-vectors belong to the

same speaker [13].

2.2 Knowledge-based weak training

Conversation 1

Conversation 2

… …

… …

Speaker A Speaker B

Speaker A Speaker C

Human labels Weak labels

Conversation 1

Conversation 2

… …

… …

Speaker A Speaker B

Speaker C Speaker D

Figure 1 Illustration of the difference between human labels and weak labels.

We propose a weak training approach that relies on some prior knowledge to get

cheap labels for unlabelled data. For example in the customer service domain that

the paper focuses on, we utilize two pieces of prior knowledge: (1) there are only a

few (often two) participants in a single session, and they can be easily separated;

(2) the speakers in different sessions are probably different, especially for customers.

By these knowledge, an utterance can be simply assigned a label that involves a

session ID and a local speaker ID, i.e., an ID is valid only within the session. These

labels are not fully correct (so are weak labels), but in most cases they are.

Fig. 1 illustrates the difference between human labels and the weak labels derived

from the above prior knowledge, where each speaker is represented by a particular

color. For human labels, the segments from the same speaker but different sessions

are correctly labelled. For weak labels, speakers in different sessions are labelled as

different, even if they are actually the same. Once the weak labels are generated,

the PLDA training is conducted as usual as with human labels.

2.3 Relation to other methods

The knowledge-based weak training proposed here is related to the semi-supervised

PLDA training in [9]. Both of them rely on weak and cheap labels, but the labels

are produced in different ways: the knowledge-based weak training relies on domain-

specific prior knowledge, and the performance is determined by the correctness of

the knowledge; the semi-supervised training relies on the the existing PLDA model,
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and the performance is determined by the quality of the existing model. From this

perspective, the semi-supervised training can be regarded as a model-based weak

training. We argue that the knowledge-based weak training is superior in scenarios

where human-labelled data are insufficient that a strong primary PLDA is not

available.

The knowledge-based weak training is also related to unsupervised PLDA adap-

tation [9, 10, 11, 7, 8]. Both the two methods make use of the distribution infor-

mation of unlabelled data and thus can be employed to perform model adaptation.

The difference is that the weak training also utilizes speaker-discriminant informa-

tion, which, although noisy, is still beneficial if the knowledge is mostly correct.

We therefore conjecture that the knowledge-based weak training is more effective

than unsupervised adaptation in scenarios where the discriminative information is

desirable.

3 Experiment
The proposed weak training approach is tested on a practical speaker verification

system trained with a large-scale telephony customer service archive. The system

is implemented based on the GMM-ivector framework. We first present the data

profile and then report the results.

3.1 Data and configurations

The training data used to train the GMM-ivector system are composed of 500 hours

of conversational speech signals sampled from a large-scale telephony customer ser-

vice archive. These data are used to train the UBMs and the T matrix of the i-vector

model. The development data used to train the PLDA model are divided into two

data sets: the STRONG set and the WEAK set that are labelled by human and

the prior knowledge described in the previous section, respectively. Note that, the

acoustic condition of the WEAK set is more close to that of the evaluation data,

which means that the WEAK set can be regarded as in-domain and therefore any

improvement with this set could be partially due to model adaptation.

The STRONG set involves speech signals of 2, 000 speakers, and the WEAK

set consists of 2, 000 double-channel sessions, each with two speakers. Each session

consists of a customer channel and a service channel, and the two channels are sepa-

rated physically. The WEAK set of the customer channel forms a WEAK-customer

subset and the WEAK set of the service channel forms a WEAK-service subset.

We distinguish customer data and service data because they hold very different

properties, particularly the probability that the ‘different session, different speak-

er’ assumption holds. Finally, we sample 1, 000 sessions from WEAK-customer and

1, 000 sessions from WEAK-service, composing a WEAK-mix subset. More details

about the development data are shown in Table 1.

The evaluation set involves 1, 236 speakers and the enrollment speech for each

speaker is 30 seconds in length. The length of the test utterances is 15 seconds and

each speaker contains about 6 test utterances. By pair-wised composition, 9, 469, 462

trails are constructed, including 7, 649 target trials and 9, 461, 813 imposter trails.

The acoustic feature used in our experiments is the 60-dimensional Mel frequen-

cy cepstral coefficients (MFCCs), which involves 20-dimensional static components
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Table 1 Development set for PLDA training.

# of Spks/Sessions # of Utts

STRONG 2,000 15,718

WEAK-customer 2,000 21,463

WEAK-service 2,000 25,852

WEAK-mix 2,000 23,987

plus the first and second order derivatives. The frame size is 20 ms and the frame

shift is 10 ms. The UBM involves 1, 024 Gaussian components and the dimension-

ality of the i-vector space is 400. The performance is evaluated in terms of Equal

Error Rate (EER) [14].

3.2 Strong and weak training

The first experiment studies the performance of the knowledge-based weak PLDA

training, and compare it with the strong training that uses the human-labelled data.

The EER results are shown in Table 2, where the results with the STRONG set and

three WEAK subsets are reported. For comparison, the results with cosine scoring

(NO PLDA) are also presented. We first observe that most of the PLDA models

outperform the cosine scoring. This is particular interesting for the weak training

approach, where only inaccurate labels are used. This confirms our conjecture that

it is possible to use weak labels derived from prior knowledge to train PLDA, at

least in scenarios where the prior knowledge is correct.

Table 2 EER(%) results of strong and weak training.

Scoring Method EER%

Cosine 2.88

PLDA: STRONG 2.25

PLDA: WEAK-customer 2.47

PLDA: WEAK-service 2.94

PLDA: WEAK-mix 2.55

Comparing the results with the three WEAK subsets, it can be observed that

WEAK-customer delivers the best performance, while WEAK-service shows the

worst (the performance is actually worse than with Cosine scoring). This is also

understandable, since the number of service people is limited (about 200) so speaker

labels of the 2, 000 sessions of the WEAK-service subset are probably incorrect

(sessions of the same speaker are labelled as distinct speaker IDs). In contrast, the

probability that two customers appear in the 2, 000 sessions in WEAK-customer is

fairly low, which means a perfect match between the prior knowledge and the real

data, leads to the good performance.

In the second experiment, we investigate the performance of different PLDA train-

ing methods with various amount of training data. The results are shown in Fig. 2,

where the data volume is controlled by the number of speakers. The diamond at

the starting point of each curve represents the performance with the cosine scoring.

It can be seen that with limited data (less than 200), the PLDA models, despite

strong training or weak training applied, do not provide better performance than
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Figure 2 Performance of strong and weak training with different amount of training data.

the simple cosine scoring. With more data, the PLDA models offer better perfor-

mance than the cosine baseline. The strong training is superior to the weak training,

and for the weak training, the model trained with WEAK-customer shows better

performance than with WEAK-service, due to the reason that has been discussed

already.

3.3 Pooled training

In this experiment, we assume limited human-labelled data and use weakly labelled

data to enhance the PLDA model. More precisely, the weakly-labelled data are

augmented with the human-labelled data to train the PLDA, which we call ‘pooled

training’. According to the experience in the last experiment, only the data in

WEAK-customer are used for data augmentation. Fig. 3 shows the contour of the

performance of the pooled training, with various amount of data from STRONG and

WEAK-customer. It can be seen that if the human-labelled data are limited (the

number of speakers is less than 500), augmenting weakly-labelled data offers clear

performance improvement, and the more data augmented, the more performance

improved. However, the effectiveness of the augmentation is not unlimited: the

additional contribution becomes marginal if the amount of weakly-labelled data

is more than 800 speakers. This is not surprising considering the noise involved

in the data. Fig. 3 also suggests an interesting concept of ‘substitution amount’,

i.e., how many weakly-labelled data can substitute for a certain amount of human-

labelled data. The contour in Fig. 3 indicates that the more human-labelled data

are provided, the more difficult they can be substituted by weakly-labelled data.

In other words, the most value of human-labelled data is to provide additional

performance gains, instead of offering baseline performance. This suggests an active

learning approach that is under investigation.
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Figure 3 Contour of EER results with pooled training, with various amount of data from
STRONG (y-axis) and WEAK-customer(x-axis).

Finally, we compare the pooled training and unsupervised learning. Note that the

WEAK dataset is more close to the evaluation set in the acoustic condition, so both

methods play the role of model adaptation. Fig. 4 shows the results, where the four

plots present configurations with different amount of human-labelled data to train

the initial PLDA model. Again, only the WEAK-customer subset is used as the

adaptation data.
From Fig. 4, it can be observed that if the human-labelled data are limited,

both the pooled training and the unsupervised adaptation offer clear performance

improvement, though the pooled training is more effective. We attribute the supe-

riority of the pooled training to the fact that it not only adapts to the new acoustic

condition, but also utilizes the speaker-related discriminant information associated

with the weak labels. Since the human-labelled data are limited, the initial PLDA is

not strong, and therefore the additional discriminant information is essentially valu-

able, leading to the clear advantage with the pooled training. If the human-labelled

data are sufficient, the initial PLDA model covers most of the acoustic conditions

and holds sufficient discriminative capability, diminishing the contribution of both

pooled training and unsupervised adaptation.

4 Conclusion
This paper proposed a knowledge-based weak training approach for PLDA and

verified its potential in speaker verification. Based on the assumption that speakers

in different sessions are different, weak labels can be easily produced and used

as supplemental data to train PLDA. Our experiments on a large-scale customer

service archive demonstrated that the weak training approach works well when

the ‘different session, different speaker’ assumption is held. This approach is most

effective when human-labelled data are limit, even outperforming the unsupervised

adaptation method. Future work will investigate the possibility to utilize both the

knowledge-based weak labels and model-based weak labels, and investigate active

learning to select the most valuable data for human labeling.
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Figure 4 Performance of pooled training and unsupervised adaptation. The green diamonds
represent the performance with strong training, the blue circles represent the best performance of
pooled training, and the red crosses represent the best performance of unsupervised adaptation.
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