Machine Learning Paradigms for Speech Recognition

Dong Wang
Borrowed from Deng's TASLP 2013
paper

ML and ASR

- ML introduces interesting ideas to ASR
- ASR is a large test bed for ML
- Some techniques are from ASR to ML

II.A Fundamentals

TABLE I
DEFINITIONS OF A SUBSET OF COMMONLY USED
SYMBOLS AND NOTATIONS IN THIS ARTICLE

Symbol	Meaning
\mathcal{X}	Space of input vectors
\mathcal{Y}	Set of output labels
$p(\mathbf{x}, y)$	Joint distribution $p(\mathbf{X} = \mathbf{x}, Y = y)$
${\mathcal F}$	Space of decision functions $f:\mathcal{X} \to \mathcal{Y}$
$f(\mathbf{x}; \lambda)$	Decision function
$d_y(\mathbf{x}; \lambda)$	Discriminant function
λ	Model or decision function parameters
$L(f(\mathbf{x}), y)$	Loss function
$\mathrm{E}_{p(\mathbf{x},y)}[\cdot]$	Expectation $E_{(\mathbf{x},y)\sim p(\mathbf{x},y)}[\cdot]$
$\mathcal D$	Training data $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})_{i=1}^m$

II.A Fundamentals

$$f(\mathbf{x}) = \arg\max_{y} d_y(\mathbf{x}); \tag{1}$$

$$R_p(f) = \mathcal{E}_{p(\mathbf{x},y)} \left[L\left(f(\mathbf{x}), y\right) \right] \tag{3}$$

$$R_{\rm emp}(f) = \frac{1}{m} \sum_{i=1}^{m} L\left(f(\mathbf{x}^{(i)}), y^{(i)}\right)$$
 (4)

$$J(f) = R_{\rm emp}(f) + \gamma C(f) \tag{5}$$

II.A Fundamentals

$$q(f) = p(f|\mathcal{D}) = \frac{p(\mathcal{D}|f)p(f)}{p(\mathcal{D})},\tag{6}$$

$$f_{Bayes}(\mathbf{x}) \stackrel{\Delta}{=} \mathrm{E}_{q(f)} \left[f(\mathbf{x}) \right]$$
 (7)

$$q^*(f) = \arg\min_{q} \left(\mathbb{E}_{q(f)} \left[R_{\text{emp}}(f) \right] + \lambda D\left(q(f) || p(f) \right) \right)$$
 (8)

- II.B Speech recognition: a structured sequence classification problem in machine learning
- II.C A high level summary of machine learning paradigms

Fig. 1. An overview of ML paradigms and their distinct characteristics.

- Generative learning:
 - Use a generative model and
 - Objective function is based on joint likelihood loss defined on the generative model
- Discriminative learning
 - Using a discriminative model or
 - Applying a discriminative training objective function to a generative model

III.A Models

$$d_y(\mathbf{x}; \lambda) = \ln p(\mathbf{x}, y; \lambda) = \ln p(\mathbf{x}|y; \lambda)p(y; \lambda) \tag{9}$$

- A simple form of generative model leads to simple decision boundary, e.g., LDA
- Naïve bayes
- Latent variables can model more complex distributions, pLSA, LDA, GMM
- Graphical model: directed (HMM) and undirected models (MRF).

III.B Loss function

$$L(f(\mathbf{x}), y) = -\ln p(\mathbf{x}, y; \lambda)$$
(10)

- Factorization
- MLE training (a) structure correct (b)training data from the true distribution (c) training data is infinite

- III. C generative learning in speech recognition
 - HMM/GMM
 - Baum-welch learning

$$R_{\text{emp}}(f) = -\sum_{i} \ln p(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}; \pi, A, B)$$
 (11)

State tying

$$C(f) = \prod_{(m,n)\in\mathcal{T}} \delta(b_m = b_n) \tag{12}$$

– PMC, VTS

- III.D Trajectory/Segment models
 - Capture dynamic properties of speech in the temporal dimension more faithfully than HMM
 - Stochastic segmentations, trajectory segmental model, trjactory HMM, hidden dynamic models
 - Some temporal trajectory structure built into the mdoels

$$\mathbf{z}(k+1) = \mathbf{g}_k \left[\mathbf{z}(k), \mathbf{\Lambda}_s \right] + \mathbf{w}_s(k) \tag{13}$$

$$\mathbf{o}(k') = \mathbf{h}_{k'} \left[\mathbf{z}(k'), \mathbf{\Omega}_{s'} \right] + \mathbf{v}_{s'}(k'). \tag{14}$$

III.D Trajectory/Segment models

$$\mathbf{z}(k+1) = \mathbf{A}_s \mathbf{z}(k) + \mathbf{B}_s \mathbf{w}_s(k) \tag{15}$$

$$\mathbf{o}(k) = \mathbf{C}_s \mathbf{z}(k) + \mathbf{v}_s(k). \tag{16}$$

Difficulties

- No much science on articulatory mechanism
- Just generative models
- No-parametric Bayesian not well studied
- Limited model assumptions. Isolated dynamic. More Bayesian approach is required

Dynamic graphical models

$$p[\mathbf{t}(k)|s_k, s_{k-1}, \mathbf{t}(k-1)] = \begin{cases} \delta[\mathbf{t}(k) - \mathbf{t}(k-1)] & \text{if } s_k = s_{k-1}, \\ \mathcal{N}(\mathbf{t}(k); \mathbf{m}(s_k), \mathbf{\Sigma}(s_k)) & \text{otherwise.} \end{cases}$$
(17)

$$p_{\mathbf{z}}\left[\mathbf{z}(k+1)|\mathbf{z}(k),\mathbf{t}(k),\mathbf{s}_{k}\right]$$

$$= p_{\mathbf{w}}\left[\mathbf{z}(k+1) - \mathbf{\Phi}_{s_{k}}\mathbf{z}(k) - (\mathbf{I} - \mathbf{\Phi}_{s_{k}})\mathbf{t}(k)\right], \quad (18)$$

$$\mathbf{z}(k+1) = \mathbf{\Phi}_s \mathbf{z}(k) + (\mathbf{I} - \mathbf{\Phi}_s) \mathbf{t}_s + \mathbf{w}(k). \tag{19}$$

$$\mathbf{o}(k) = \mathbf{h} \left[\mathbf{z}(k) \right] + \mathbf{w}_0(k), \tag{20}$$

$$p_{\mathbf{v}} \left(\mathbf{v}(k) | \mathbf{o}(k), \mathbf{h}, \mathbf{n}(k) \right)$$

$$= p_{\mathbf{r}} \left[\mathbf{v}(k) - \mathbf{o}(k) + \mathbf{h} + \mathbf{C} \log \times \left[\mathbf{I} + \exp \left[\mathbf{C}^{-1} \left(\mathbf{n}(k) - \mathbf{o}(k) - \mathbf{h} \right) \right] \right] \right]. \quad (21)$$

IV.A Models

$$f(\mathbf{x}; \lambda) = -\arg\min_{y'} \sum_{y} \Delta(y', y) p(y|\mathbf{x}; \lambda)$$
 (22)

MLP or log linear

$$f(\mathbf{x}; \lambda) = \operatorname*{arg\,min}_{y} p(y|\mathbf{x}; \lambda) \tag{23}$$

$$d(\mathbf{x}; \lambda) = \ln p(y|\mathbf{x}; \lambda) \tag{24}$$

Margin

$$d_y(\mathbf{x}; \lambda) = \lambda \cdot \phi(\mathbf{x}, y) \tag{25}$$

- IV.B. Loss functions
 - Probability-based Loss

$$L(f(\mathbf{x}), y) = -\ln p(y|\mathbf{x}; \lambda). \tag{26}$$

$$p(\mathbf{y}|\mathbf{x}; \lambda) = \frac{1}{Z_{\lambda}(\mathbf{x})} \exp \lambda \cdot f(\mathbf{y}, \mathbf{x}). \tag{27}$$

$$p(\mathbf{y}|\mathbf{x}; \lambda) = \frac{1}{Z_{\lambda}(\mathbf{x})} \sum_{\mathbf{z}} \exp \lambda \cdot f(\mathbf{y}, \mathbf{z}, \mathbf{x}). \tag{28}$$

$$L(f(\mathbf{x}), \mathbf{y}) = -\ln \sum_{\mathbf{y}} \Delta(\mathbf{y}', \mathbf{y}) p(\mathbf{y}|\mathbf{x}; \lambda) \tag{29}$$

Margin-based Loss

Fig. 3. Convex surrogates of 0-1 loss as discussed and analyzed in [6].

MCE and multi-class hinge

$$L(f(\mathbf{x}), y) = \sigma \left(-d_y(\mathbf{x}; \lambda) + \ln \left[\frac{1}{|\mathcal{Y}| - 1} \sum_{y' \neq y} \exp\{d_y(\mathbf{x}; \lambda)\eta\} \right]^{\frac{1}{\eta}} \right)$$
(30)

$$L(f(\mathbf{x}), y) = \sum_{y' \neq y} |1 - d_y(\mathbf{x}; \lambda) + d_{y'}(\mathbf{x}; \lambda)|_{+}$$
(31)

$$L(f(\mathbf{x}), \mathbf{y}) = \sum_{\mathbf{y}' \neq \mathbf{y}} |\Delta(\mathbf{y}, \mathbf{y}') - d_{\mathbf{y}}(\mathbf{x}; \lambda) + d_{\mathbf{y}'}(\mathbf{x}; \lambda)|_{+} (32)$$

- IV.C discriminative learning in speech recognition
 - Models: MEMM, CRF, hidden CRF, MLP (generative models), decision boundary, SVM-HMM
 - Conditional likelihood

$$R_{\text{emp}}(\lambda) = -\sum_{i} \ln \frac{p(\mathbf{x}^{(i)}, y^{(i)}; \lambda)}{p(\mathbf{x}^{(i)}; \lambda)}$$
(33)

- Bayesian minimum Risk
 - MCW, MPE, MWE

Large Margin

$$L(f(\mathbf{x}), \mathbf{y}) = \sum_{\mathbf{y}' \neq \mathbf{y}} \left| \Delta(\mathbf{y}, \mathbf{y}') - \ln \frac{p(\mathbf{x}, \mathbf{y}; \lambda)}{p(\mathbf{x}, \mathbf{y}; \lambda)} \lambda) \right|_{+}$$
(36)

$$R_{\text{emp}}(f) = \min_{i} \left(d_y(\mathbf{x}_i; \lambda) - \max_{y' \neq y} d_{y'}(\mathbf{x}_i; \lambda) \right), \quad (41)$$

- IV.D Discriminative learning for HMM and related generative model
 - MMI, MCE, MWE, MPE
 - fMPE
- IV.E Hybrid generative-discriminative learning
 - Generative model for feature extraction, discriminative model for classification
 - Fisher kernel

V. semi-supervised learning

- V.C. semi-supervised learning
 - Inductive approaches

$$R_{\rm emp}(f) + \alpha R_{\mathcal{U}}(f) + \gamma C(\lambda)$$
 (44)

$$R_{\mathcal{U}}(f) = -\sum_{i=m+1}^{m+n} \ln p(\mathbf{x}^{(i)}; \lambda)$$
 (45)

$$R_{\mathcal{U}}(f) = H(y|\mathbf{x};\lambda) \tag{46}$$

$$R_{\mathcal{U}}(f) = D(\hat{p}||\tilde{p}_{\lambda}) \tag{47}$$

V. semi-supervised learning

V.C: transductive approaches

$$\min_{F} L(F, Y) + \gamma C(F, W) \tag{50}$$

V. semi-supervised learning

- V.D. semi-supervised learning in speech recognition
- V.E. Active learning
 - Uncertainty sampling
 - Query-by-committee
 - Exploiting structure in data
 - Submodular active selection: diminishing return

VI. Transfer Learning

- VI.A. Homogeneous transfer
 - 1) data combination
 - 2) model adaptation

$$J(f) = R_{\text{emp}}^{T}(f) + \gamma C(f; f^{S})$$
(55)

VI. Transfer learning

- VI.B. homogeneous transfer in speech recognition
 - MAP, MLLR, SAT
- VI.C heterogeneous transfer
 - Map directly
 - Map to latent space
- VI.D multi-task learning

$$\min_{\theta, \mathbf{f}} \frac{1}{K} \sum_{k} R_{\text{emp}}^{k}(f^{k}) + \gamma C(\mathbf{f}; \theta)$$
 (64)

VI. Transfer learning

- VI.E. heterogeneous and multi-task learning in ASR
 - Audio-visual recognition
 - Talking head
 - Articulatory learning
 - EEG
 - Cross lingual

VII. Emerging methods

- Deep learning
- Sparse representation
 - Sparse representation and signal recovery
 - Relevance vector machine and relevance detection

VIII. Conclusions

- A lost need to be learned from ML for ASR
- Care should be taken when learning from ML
- ASR and ML combination foster new ideas