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Online Portfolio Selection: A Survey
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Online portfolio selection is a fundamental problem in computational finance, which has been extensively
studied across several research communities, including finance, statistics, artificial intelligence, machine
learning, and data mining. This article aims to provide a comprehensive survey and a structural under-
standing of online portfolio selection techniques published in the literature. From an online machine learning
perspective, we first formulate online portfolio selection as a sequential decision problem, and then we survey
a variety of state-of-the-art approaches, which are grouped into several major categories, including bench-
marks, Follow-the-Winner approaches, Follow-the-Loser approaches, Pattern-Matching–based approaches,
and Meta-Learning Algorithms. In addition to the problem formulation and related algorithms, we also
discuss the relationship of these algorithms with the capital growth theory so as to better understand the
similarities and differences of their underlying trading ideas. This article aims to provide a timely and
comprehensive survey for both machine learning and data mining researchers in academia and quantitative
portfolio managers in the financial industry to help them understand the state of the art and facilitate their
research and practical applications. We also discuss some open issues and evaluate some emerging new
trends for future research.
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1. INTRODUCTION

Portfolio selection, aiming to optimize the allocation of wealth across a set of assets,
is a fundamental research problem in computational finance and a practical engineer-
ing task in financial engineering. There are two major schools for investigating this
problem—that is, the mean-variance theory [Markowitz 1952, 1959; Markowitz et al.
2000], mainly from the finance community, and the Capital Growth Theory (CGT) [Kelly
1956; Hakansson and Ziemba 1995], primarily originated from information theory. The
mean-variance theory, widely known in the asset management industry, focuses on a
single-period (batch) portfolio selection to trade off a portfolio’s expected return (mean)
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and risk (variance), which typically determines the optimal portfolios subject to the
investor’s risk-return profile. On the other hand, CGT focuses on multiple-period or
sequential portfolio selection, aiming to maximize the portfolio’s expected growth rate,
or expected log return. Although both theories solve the task of portfolio selection, the
latter is fitted to the “online” scenario, which naturally consists of multiple periods and
is the focus of this article.

Online portfolio selection, which sequentially selects a portfolio over a set of assets in
order to achieve certain targets, is a natural and important task for asset portfolio man-
agement. Aiming to maximize the cumulative wealth, several categories of algorithms
have been proposed to solve this task. One category of algorithms—Follow the Winner—
tries to asymptotically achieve the same growth rate (expected log return) as that of
an optimal strategy, which is often based on the CGT. The second category—Follow the
Loser—transfers the wealth from winning assets to losers, which seems contradictory
to the common sense but empirically often achieves significantly better performance.
Finally, the third category—Pattern Matching–based approaches—tries to predict the
next market distribution based on a sample of historical data and explicitly optimizes
the portfolio based on the sampled distribution. Although these three categories are
focused on a single strategy (class), there are also some other strategies that focus on
combining multiple strategies (classes)—Meta-Learning Algorithms (MLAs). As a brief
summary, Table I outlines the list of main algorithms and corresponding references.

This article provides a comprehensive survey of online portfolio selection algorithms
belonging to the mentioned categories. To the best of our knowledge, this is the first
survey that includes these three categories and the MLAs as well. Moreover, we are
the first to explicitly discuss the connection between the online portfolio selection
algorithms and CGT, and illustrate their underlying trading ideas. In the following
sections, we also clarify the scope of this article and discuss some related existing
surveys in the literature.

1.1. Scope

In this survey, we focus on discussing the empirical motivating ideas of the online
portfolio selection algorithms, while only skimming theoretical aspects (e.g., competi-
tive analysis by El-Yaniv [1998] and Borodin et al. [2000] and asymptotical convergence
analysis by Györfi et al. [2012]). Moreover, various other related issues and topics are
excluded from this survey, as discussed next.

First of all, it is important to mention that the Portfolio Selection task in our survey
differs from a great body of financial engineering studies [Kimoto et al. 1993; Merhav
and Feder 1998; Cao and Tay 2003; Lu et al. 2009; Dhar 2011; Huang et al. 2011], which
attempted to forecast financial time series by applying machine learning techniques
and conduct single stock trading [Katz and McCormick 2000; Koolen and Vovk 2012],
such as reinforcement learning [Moody et al. 1998; Moody and Saffell 2001; O et al.
2002], neural networks [Kimoto et al. 1993; Dempster et al. 2001], genetic algorithms
[Mahfoud and Mani 1996; Allen and Karjalainen 1999; Mandziuk and Jaruszewicz
2011], decision trees [Tsang et al. 2004], and support vector machines [Tay and Cao
2002; Cao and Tay 2003; Lu et al. 2009], and boosting and expert weighting [Creamer
2007; Creamer and Freund 2007, 2010; Creamer 2012]. The key difference between
these existing works and the subject area of this survey is that their learning goal is to
make explicit predictions of future prices/trends and to trade on a single asset [Borodin
et al. 2000, Section 6], whereas our goal is to directly optimize the allocation among a
set of assets.

Second, this survey emphasizes the importance of “online” decision for portfolio selec-
tion, meaning that related market information arrives sequentially and the allocation
decision must be made immediately. Due to the sequential (online) nature of this task,
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Table I. General Classification for the State-of-the-Art Online Portfolio Selection Algorithms

Classifications Algorithms Representative References
Benchmarks Buy And Hold

Best Stock
Constant Rebalanced Portfolios Kelly [1956]; Cover [1991]

Follow the Winner Universal Portfolios Cover [1991]; Cover and
Ordentlich [1996]

Exponential Gradient Helmbold et al. [1996, 1998]
Follow the Leader Gaivoronski and Stella [2000]
Follow the Regularized Leader Agarwal et al. [2006]
Aggregating-Type Algorithms Vovk and Watkins [1998]

Follow the Loser Anti-Correlation Borodin et al. [2003, 2004]
Passive Aggressive Mean Reversion Li et al. [2012]
Confidence Weighted Mean Reversion Li et al. [2011b, 2013]
Online Moving Average Reversion Li and Hoi [2012]
Robust Median Reversion Huang et al. [2013]

Pattern-Matching–Based
Approaches

Nonparametric Histogram Log-Optimal
Strategy

Györfi et al. [2006]

Nonparametric Kernel-Based
Log-Optimal Strategy

Nonparametric Nearest Neighbor
Log-Optimal Strategy

Györfi et al. [2008]

Correlation-Driven Nonparametric
Learning Strategy

Li et al. [2011a]

Nonparametric Kernel-Based
Semi-Log-Optimal Strategy

Györfi et al. [2007]

Nonparametric Kernel-Based
Markowitz-Type Strategy

Ottucsák and Vajda [2007]

Nonparametric Kernel-Based GV-Type
Strategy

Györfi and Vajda [2008]

Meta-Learning
Algorithms

Aggregating Algorithm Vovk [1990], [1998]
Fast Universalization Algorithm Akcoglu et al. [2002, 2004]
Online Gradient Updates Das and Banerjee [2011]
Online Newton Updates
Follow the Leading History Hazan and Seshadhri [2009]

we mainly focus on the survey of multiperiod/sequential portfolio selection work, in
which the portfolio is rebalanced to a specified allocation at the end of each trading
period [Cover 1991], and the goal typically is to maximize the expected log return over
a sequence of trading periods. We note that these works can be connected to the CGT
[Kelly 1956], stemmed from the seminal paper of Kelly [1956] and further developed
by Breiman [1960, 1961], Hakansson [1970, 1971], Thorp [1969, 1971], Bell and Cover
[1980], Finkelstein and Whitley [1981], Algoet and Cover [1988], Barron and Cover
[1988], MacLean et al. [1992], MacLean and Ziemba [1999], Ziemba and Ziemba [2007],
MacLean et al. [2010], and others. It has been successfully applied to gambling [Thorp
1962, 1969, 1997], sports betting [Hausch et al. 1981; Ziemba and Hausch 1984, 2008;
Thorp 1997], and portfolio investment [Thorp and Kassouf 1967; Rotando and Thorp
1992; Ziemba 2005]. We thus exclude the studies related to the mean-variance port-
folio theory [Markowitz 1952, 1959], which were typically developed for single-period
(batch) portfolio selection (with the exception of some extensions [Li and Ng 2000; Dai
et al. 2010]).

Finally, this article focuses on surveying the algorithmic aspects and providing a
structural understanding of the existing online portfolio selection strategies. To prevent
loss of focus, we will not dig into theoretical details. In the literature, there is a large
body of related work for the theory [MacLean et al. 2011]. Interested researchers can
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explore the details of the theory from two exhaustive surveys [Thorp 1997; MacLean
and Ziemba 2008], and its history from Poundstone [2005] and Györfi et al. [2012,
Chapter 1].

1.2. Related Surveys

There exist several related surveys in this area, but none of them is comprehensive
and timely enough for understanding the state-of-the-art of online portfolio selection
research. For example, El-Yaniv [1998, Section 5] and Borodin et al. [2000] surveyed
the online portfolio selection problem in the framework of competitive analysis. Using
our classification in Table I, Borodin et al. mainly surveyed the benchmarks and two
Follow-the-Winner algorithms—that is, Universal Portfolios and Exponential Gradient
(refer to the details in Section 3.2). Although the competitive framework is important
for the Follow-the-Winner category, both surveys are outdated in the sense that they
do not include a number of state-of-the-art algorithms afterward. A recent survey by
Györfi et al. [2012, Chapter 2] mainly surveyed Pattern-Matching–based approaches
(i.e., the third category shown in Table I, which does not include the other categories
in this area and is thus far from complete).

1.3. Organization

The remainder of this article is organized as follows. Section 2 formulates the prob-
lem of online portfolio selection formally and addresses several practical issues.
Section 3 introduces the state-of-the-art algorithms, including Benchmarks in
Section 3.1, the Follow-the-Winner approaches in Section 3.2, Follow-the-Loser ap-
proaches in Section 3.3, Pattern-Matching–based approaches in Section 3.4, and Meta-
Learning algorithms in Section 3.5. Section 4 connects the existing algorithms with
the CGT and also illustrates the essentials of their underlying trading ideas. Section 5
discusses several related open issues, and finally Section 6 concludes this survey and
outlines some future directions.

2. PROBLEM SETTING

Consider a financial market with m assets, in which we invest our wealth over all
assets in the market for a sequence of n trading periods. The market price change is
represented by a m-dimensional price relative vector xt ∈ R

m
+, t = 1, . . . , n, where the

ith element of tth price relative vector, xt,i, denotes the ratio of tth closing price to last
closing price for the ith assets. Thus, an investment in asset i on period t increases by a
factor of xt,i. We also denote the market price changes from period t1 to t2 (t2 > t1) by a
market window, which consists of a sequence of price relative vectors xt2

t1 = {xt1 , . . . , xt2},
where t1 denotes the beginning period and t2 denotes the ending period. One special
market window starts from period 1 to n—that is, xn

1 = {x1, . . . , xn}.
At the beginning of the tth period, an investment is specified by a portfolio vector

bt, t = 1, . . . , n. The ith element of tth portfolio, bt,i, represents the proportion of capital
invested in the ith asset. Typically, we assume a portfolio is self-financed, and no
margin/short is allowed. Thus, a portfolio satisfies the constraint that each entry is
nonnegative and all entries sum up to one—that is, bt ∈ �m, where �m = {b : b �
0, b�1 = 1}. Here, 1 is the m-dimensional vector of all 1s, and b�1 denotes the inner
product of b and 1. The investment procedure from period 1 to n is represented by a
portfolio strategy, which is a sequence of mappings as follows:

b1 = 1
m

1, bt : R
m(t−1)
+ → �m, t = 2, 3, . . . , n,
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where bt = bt(xt−1
1 ) denotes the portfolio computed from the past market window xt−1

1 .
Let us denote the portfolio strategy for n periods as bn

1 = {b1, . . . , bn}.
For the tth period, a portfolio manager apportions its capital according to portfolio bt

at the opening time and holds the portfolio until the closing time. Thus, the portfolio
wealth will increase by a factor of b�

t xt = ∑m
i=1 bt,ixt,i. Since this model uses price

relatives and reinvests the capital, the portfolio wealth will increase multiplicatively.
From period 1 to n, a portfolio strategy bn

1 increases the initial wealth S0 by a factor of∏n
t=1 b�

t xt—that is, the final cumulative wealth after a sequence of n periods is

Sn
(
bn

1

) = S0

n∏
t=1

b�
t xt = S0

n∏
t=1

m∑
i=1

bt,ixt,i.

Since the model assumes multiperiod investment, we define the exponential growth
rate for a strategy bn

1 as

Wn
(
bn

1

) = 1
n

log Sn
(
bn

1

) = 1
n

n∑
t=1

log bt · xt.

Finally, let us combine all elements and formulate the online portfolio selection
model. In a portfolio selection task, the decision maker is a portfolio manager, whose
goal is to produce a portfolio strategy bn

1 in order to achieve certain targets. Following
the principles conveyed by the algorithms in Table I, our target is to maximize the port-
folio cumulative wealth Sn. The portfolio manager computes the portfolio strategy in a
sequential fashion. On the beginning of period t, based on the previous market window
xt−1

1 , the portfolio manager learns a new portfolio vector bt for the coming price relative
vector xt, where the decision criterion varies among different managers/strategies. The
portfolio bt is scored using the portfolio period return bt ·xt. This procedure is repeated
until period n, and the strategy is finally scored according to the portfolio cumulative
wealth Sn. Algorithm 1 shows the framework of online portfolio selection, which serves
as a general procedure to backtest any online portfolio selection algorithm.

ALGORITHM 1: Online portfolio selection framework.
Input: xn

1: Historical market sequence
Output: Sn: Final cumulative wealth

Initialize S0 = 1, b1 = ( 1
m, . . . , 1

m

)
for t = 1, 2, . . . , n do

Portfolio manager computes a portfolio bt ;
Market reveals the market price relative xt ;
Portfolio incurs period return b�

t xt and updates cumulative return St = St−1 × (
b�

t xt
)

;
Portfolio manager updates his/her online portfolio selection rules ;

end

In general, some assumptions are made in the previous widely adopted model:

(1) Transaction cost. We assume no transaction costs/taxes in the model.
(2) Market liquidity. We assume that one can buy and sell any quantity of any asset

in its closing prices.
(3) Impact cost. W assume market behavior is not affected by any portfolio selection

strategy.
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To better understand these notions and the model presented let us illustrate with a
classical example.

Example 2.1 (Synthetic market by Cover and Gluss [1986]). Assume a two-asset
market with cash and one volatile asset with the price relative sequence xn

1 =
{(1, 2), (1, 1

2 ), (1, 2), . . . }. The 1st price relative vector x1 = (1, 2) means that if we in-
vest $1 in the first asset, you will get $1 at the end of period; if we invest $1 in the
second asset, we will get $2 after the period.

Let a fixed proportion portfolio strategy be bn
1 = {( 1

2 , 1
2 ), ( 1

2 , 1
2 ), . . . }, which means that

every day, the manager redistributes the capital equally among the two assets. For the
1st period, the portfolio wealth increases by a factor of 1× 1

2 +2× 1
2 = 3

2 . Initializing the
capital with S0 = 1, then the capital at the end of the 1st period equals S1 = S0 × 3

2 = 3
2 .

Similarly, S2 = S1 × (1 × 1
2 + 1

2 × 1
2 ) = 3

2 × 3
4 = 9

8 . Thus, at the end of period n, the final
cumulative wealth equals

Sn
(
bn

1

) =
{

9
8

n
2 n is even

3
2 × 9

8

n−1
2 n is odd

,

and the exponential growth rate is

Wn
(
bn

1

) =
{ 1

2 log 9
8 n is even

n−1
2n log 9

8 + 1
n log 3

2 n is odd
,

which approaches 1
2 log 9

8 > 0 if n is sufficiently large.

2.1. Transaction Cost

In reality, the most important and unavoidable issue is transaction costs. In this section,
we model the transaction costs into our formulation, which enables us to evaluate
online portfolio selection algorithms. However, we will not introduce strategies [Davis
and Norman 1990; Iyengar and Cover 2000; Akian et al. 2001; Schäfer 2002; Györfi and
Vajda 2008; Ormos and Urbán 2011] that directly solve the transaction costs issues.

The widely adopted transaction costs model is the proportional transaction costs
model [Blum and Kalai 1999; Györfi and Vajda 2008], in which the incurred trans-
action cost is proportional to the wealth transferred during rebalancing. Let the
brokers charge transaction costs on both buying and selling. At the beginning
of the tth period, the portfolio manager intends to rebalance the portfolio from clos-
ing price adjusted portfolio b̂t−1 to a new portfolio bt. Here, b̂t−1 is calculated as b̂t−1,i =
bt−1,i xt−1,i
bt−1·xt−1

, i = 1, . . . , m. Assuming two transaction cost rates γb ∈ (0, 1) and γs ∈ (0, 1),
where γb denotes the transaction costs rate incurred during buying and γs denotes
the transaction costs rate incurred during selling. After rebalancing, St−1 will be de-
composed into two parts—that is, the net wealth Nt−1 in the new portfolio bt and the
transaction costs incurred during the buying and selling. If the wealth on asset i before
rebalancing is higher than that after reblancing—that is, bt−1,i xt−1,i

bt−1·xt−1
St−1 ≥ bt,i Nt−1—

then there will be a selling rebalancing. Otherwise, a buying rebalancing is required.
Formally,

St−1 = Nt−1 + γs

m∑
i=1

(
bt−1,ixt−1,i

bt−1 · xt−1
St−1 − bt,i Nt−1

)+
+ γb

m∑
i=1

(
bt,i Nt−1 − bt−1,ixt−1,i

bt−1 · xt−1
St−1

)+
.

Let us denote transaction costs factor [Györfi and Vajda 2008] as the ratio of net wealth
after rebalancing to wealth before rebalancing—that is, ct−1 = Nt−1

St−1
∈ (0, 1). Dividing
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the previous equation by St−1, we get

1 = ct−1 + γs

m∑
i=1

(
bt−1,ixt−1,i

bt−1 · xt−1
− bt,ict−1

)+
+ γb

m∑
i=1

(
bt,ict−1 − bt−1,ixt−1,i

bt−1 · xt−1

)+
. (1)

Clearly, given bt−1, xt−1, and bt, there exists a unique transaction costs factor for each
rebalancing. Thus, we can denote ct−1 as a function, ct−1 = c(bt, bt−1, xt−1). Moreover,
considering that the portfolio is in the simplex domain, then the factor ranges between
1−γs
1+γb

≤ ct−1 ≤ 1.
Finally, for each period t, the wealth grows by a factor as

St = St−1 × ct−1 × (bt · xt),

and the final cumulative wealth after n periods equals

Sn = S0

n∏
t=1

ct−1 × (
bt · xt

)
,

where ct−1 is calculated as Equation (1).

3. ONLINE PORTFOLIO SELECTION APPROACHES

In this section, we survey the area of online portfolio selection. Algorithms in this area
formulate the online portfolio selection task as in Section 2 and derive explicit portfolio
update schemes for each period. Basically, the routine is to implicitly assume various
price relative predictions and learn optimal portfolios.

In the subsequent sections, we mainly list the algorithms following Table I. In par-
ticular, we first introduce several benchmark algorithms in Section 3.1. Then, we intro-
duce the algorithms with explicit update schemes in the subsequent three sections. We
classify them based on the direction of the weight transfer. The first approach—Follow
the Winner—tries to increase the relative weights of more successful experts/stocks,
often based on their historical performance. On the contrary, the second approach—
Follow the Loser—tries to increase the relative weights of less successful experts/stocks,
or transfer the weights from winners to losers. The third approachPattern Matching—
tries to build a portfolio based on some sampled similar historical patterns with no
explicit weights transfer directions. After that, we survey MLAs, which can be applied
to higher-level experts equipped with any existing algorithm.

3.1. Benchmarks

3.1.1. Buy-and-Hold Strategy. The most common baseline is the Buy-and-Hold (BAH)
strategy, in which one invests wealth among a pool of assets with an initial portfolio b1
and holds the portfolio until the end. The manager only buys the assets at the beginning
of the 1st period and does not rebalance in the following periods, and the portfolio
holdings are implicitly changed following the market fluctuations. For example, at
the end of the 1st period, the portfolio holding becomes b1

⊙
x1

b�
1 x1

, where
⊙

denotes an
elementwise product. In summary, the final cumulative wealth achieved by a BAH
strategy is the initial portfolio weighted average of individual stocks’ final wealth,

Sn
(
BAH

(
b1

)) = b1 ·
(

n⊙
t=1

xt

)
.

The BAH strategy with initial uniform portfolio b1 = ( 1
m, . . . , 1

m) is referred to as
uniform BAH strategy, which is often adopted as a market strategy to produce a market
index.
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3.1.2. Best Stock Strategy. Another widely adopted benchmark is the Best Stock (Best)
strategy, which is a special BAH strategy that puts all capital on the stock with best
performance in hindsight. Clearly, its initial portfolio b◦ in hindsight can be calculated
as

b◦ = arg max
b∈�m

b ·
(

n⊙
t=1

xt

)
.

As a result, the final cumulative wealth achieved by the Best strategy can be calculated
as

Sn (Best) = max
b∈�m

b ·
(

n⊙
t=1

xt

)
= Sn

(
BAH

(
b◦)) .

3.1.3. Constant Rebalanced Portfolios. Another more sophisticated benchmark strategy
is the Constant Rebalanced Portfolio (CRP) strategy, which rebalances the portfolio to
a fixed portfolio b every period. In particular, the portfolio strategy can be represented
as bn

1 = {b, b, . . . }. Thus, the cumulative portfolio wealth achieved by a CRP strategy
after n periods is defined as

Sn(CRP(b)) =
n∏

t=1

b�xt.

One special CRP strategy that rebalances to uniform portfolio b = ( 1
m, . . . , 1

m) each
period is the Uniform Constant Rebalanced Portfolio (UCRP). It is possible to calculate
an optimal offline portfolio for the CRP strategy as

b� = arg max
bn∈�m

log Sn(CRP(b)) = arg max
b∈�m

n∑
t=1

log(b�xt),

which is convex and can be efficiently solved. The CRP strategy with b� is denoted
by Best Constant Rebalanced Portfolio (BCRP). BCRP achieves a final cumulative
portfolio wealth and corresponding exponential growth rate defined as follows:

Sn(BCRP) = max
b∈�m

Sn(CRP(b)) = Sn(CRP(b�)),

Wn(BCRP) = 1
n

log Sn(BCRP) = 1
n

log Sn(CRP(b�)).

Note that BCRP strategy is a hindsight strategy, which can only be calculated with
complete market sequences. Cover [1991] proved the benefits of BCRP as a target—
that is, BCRP exceeds the best stock, Value Line Index (geometric mean of component
returns), and the Dow Jones Index (arithmetic mean of component returns, or BAH).
Moreover, BCRP is invariant under permutations of the price relative sequences—that
is, it does not depend on the order in which x1, x2, . . . , xn occur.

Until now, let us compare BAH and CRP strategies by continuing Example 2.1.

Example 3.1 (Synthetic Market by Cover and Gluss [1986]). Assume a two-asset
market with cash and one volatile asset with the price relative sequence xn

1 =
{(1, 2), (1, 1

2 ), (1, 2), . . . }. Let us consider BAH with uniform initial portfolio b1 = ( 1
2 , 1

2 )
and the CRP with uniform portfolio b = ( 1

2 , 1
2 ). Clearly, since no asset grows in the long

run, the final wealth of BAH equals the uniform weighted summation of two assets,
which roughly equals to 1 in the long run. On the other hand, according to the analysis
of Example 2.1, the final cumulative wealth of CRP is roughly 9

8

n
2 , which increases
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exponentially. Note that the BAH only rebalances on the 1st period, whereas the CRP
rebalances every period. While market provides no return on the synthetic market,
CRP can produce an exponentially increasing return. The underlying idea of CRP is to
take advantage of the underlying volatility, or so-called volatility pumping [Luenberger
1998, Chapter 15].

Since CRP rebalances a fixed portfolio each period, its frequent transactions will
incur high transaction costs. Helmbold et al. [1996, 1998] proposed a Semi-Constant
Rebalanced Portfolio (Semi-CRP), which rebalances the portfolio on selected periods
rather than every period.

One desired theoretical result for online portfolio selection is universality [Cover
1991]. An online portfolio selection algorithm Alg is universal if its average (external)
regret [Stoltz and Lugosi 2005; Blum and Mansour 2007] for n periods asymptotically
approaches 0,

1
n

regretn(Alg) = Wn(BCRP) − Wn(Alg) −→ 0, as n → ∞. (2)

In other words, a universal portfolio selection algorithm asymptotically approaches
the same exponential growth rate as BCRP strategy for arbitrary sequences of price
relatives.

3.2. Follow-the-Winner Approaches

Follow the Winner is characterized by increasing the relative weights of more success-
ful experts/stocks. Rather than targeting market and best stock, algorithms in this
category often aim to track the BCRP strategy, which can be shown to be the optimal
strategy in an i.i.d. market [Cover and Thomas 1991, Theorem 15.3.1]. In other words,
such optimality motivates that universal portfolio selection algorithms approach the
performance of the hindsight BCRP for arbitrary sequence of price relative vectors,
called individual sequences.

3.2.1. Universal Portfolios. The basic idea of Universal Portfolio–type algorithms is to
assign the capital to a single class of base experts, let the experts run, and finally
pool their wealth. Strategies in this type are analogous to the BAH strategy. Their
difference is that base BAH expert is the strategy investing on a single stock, and thus
the number of experts is the same as that of stocks. In other words, BAH strategy
buys the individual stocks and lets the stocks go and finally pools their individual
wealth. On the other hand, the base expert in the Follow-the-Winner category can be
any strategy class that invests in any set of stocks in the market. Besides, algorithms
in this category are also similar to the MLAs further described in Section 3.5, although
MLA generally applies to experts of multiple classes.

Cover [1991] proposed the Universal Portfolio (UP) strategy, and Cover and
Ordentlich [1996] further refined the algorithm as μ-Weighted Universal Portfolio,
in which μ denotes a given distribution on the space of valid portfolio �m. Intuitively,
Cover’s UP operates similar to a Fund of Funds (FOF), and its main idea is to BAH the
parameterized CRP strategies over the whole simplex domain. In particular, it initially
invests a proportion of wealth dμ(b) to each portfolio manager operating CRP strategy
with b ∈ �m, and lets the CRP managers run. Then, at the end, each manager will
grow his wealth to Sn(b)dμ(b). Finally, Cover’s UP pools the individual experts’ wealth
over the continuum of portfolio strategies. Note that Sn(b) = enWn(b), which means that
the portfolio grows at an exponential rate of Wn(b).
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Formally, its update scheme [Cover and Ordentlich 1996, Definition 1] can be inter-
preted as a historical performance weighed average of all valid CRPs,

bt+1 =
∫
�m

bSt(b)dμ(b)∫
�m

St(b)dμ(b)
.

Note that at the beginning of period t + 1, one CRP manager’s wealth (historical
performance) equals to St(b)dμ(b). Incorporating the initial wealth of S0 = 1, the
final cumulative wealth is the weighted average of CRP managers’ wealth [Cover and
Ordentlich 1996, Eq. (24)],

Sn(UP) =
∫

�m

Sn(b)dμ(b). (3)

One special case is that μ follows a uniform distribution, then the portfolio update re-
duces to Cover’s UP [Cover 1991, Eq. (1.3)]. Another special case is Dirichlet ( 1

2 , . . . , 1
2 )

weighted UP [Cover and Ordentlich 1996], which is proved to be a more optimal alloca-
tion. Alternatively, if a loss function is defined as the negative logarithmic function of
portfolio return, Cover’s UP is actually an exponentially weighted average forecaster
[Cesa-Bianchi and Lugosi 2006].

Cover [1991] showed that with suitable smoothness conditions the average of expo-
nentials grows at the same exponential rate as the maximum, thus one can asymptot-
ically approach BCRP’s exponential growth rate. The regret achieved by Cover’s UP
is O(mlog n), and its time complexity is O(nm), where m denotes the number of stocks
and n refers to the number of periods. Cover and Ordentlich [1996] proved that the
( 1

2 , . . . , 1
2 ) weighted Universal Portfolios has the same scale of regret bound but a better

constant term [Cover and Ordentlich 1996, Theorem 2].
As Cover’s UP is based on an ideal market model, one research topic with respect

to Cover’s UP is to extend the algorithm with various realistic assumptions. Cover
and Ordentlich [1996] extended the model to include side information, which can be
instantiated experts’ opinions, fundamental data, and so forth. Blum and Kalai [1999]
took account of transaction costs for online portfolio selection and proposed a universal
portfolio algorithm to handle the costs.

Another research topic is to generalize Cover’s UP with different underlying base
expert classes, rather than the CRP strategy. Jamshidian [1992] generalized the
algorithm for continuous time market and derived the long-term performance of Cover’s
UP in this setting. Vovk and Watkins [1998] applied Aggregating Algorithm (AA) [Vovk
1990] to a finite number of arbitrary investment strategies. Cover’s UP becomes a spe-
cialized case of AA when applied to an infinite number of CRPs. We will further in-
vestigate AA in Section 3.2.5. Ordentlich and Cover [1998] derived the lower bound of
the final wealth achieved by any nonanticipating investment strategy to that of BCRP
strategy. Cross and Barron [2003] generalized Cover’s UP from CRP strategy class to
any parameterized target class and proposed a universal strategy that costs a polyno-
mial time. Akcoglu et al. [2002, 2004] extended Cover’s UP from the parameterized CRP
class to a wide class of investment strategies, including trading strategies operating on
a single stock and portfolio strategies operating on the whole stock market. Kozat and
Singer [2011] proposed a similar universal algorithm based on the class of Semi-CRPs
[Helmbold et al. 1996, 1998], which provides good performance with transaction costs.

Rather than the previous analysis, various work has also been proposed to discuss
the connection between Cover’s UP with universal prediction [Feder et al. 1992],
data compression [Rissanen 1983] and Markowitz’s mean-variance theory [Markowitz
1952, 1959]. Algoet [1992] discussed the universal schemes for prediction, gambling,
and portfolio selection. Cover [1996] and Ordentlich [1996] discussed the connection
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of universal portfolio selection and data compression. Belentepe [2005] presented a
statistical view of Cover’s UP strategy and connected it with traditional Markowitz’s
mean-variance portfolio theory [Markowitz 1952]. The authors showed that by
allowing short selling and leverage, UP is approximately equivalent to sequential
mean-variance optimization; otherwise, the strategy is approximately equivalent to
constrained sequential optimization. Although its update scheme is distributional
free, UP implicitly estimates the multivariate mean and covariance matrix.

Cover’s UP has a good theoretical performance guarantee; however, its implementa-
tion costs exponential time in the number of assets, which restricts its practical capabil-
ity. To overcome this computational bottleneck, Kalai and Vempala [2002] presented an
efficient implementation based on nonuniform random walks that are rapidly mixing.
Their implementation requires a poly running time of O(m7n8), which is a substantial
improvement of the original bound of O(nm).

3.2.2. Exponential Gradient. The strategies in the Exponential Gradient type generally
focus on the following optimization problem:

bt+1 = arg max
b∈�m

η log b · xt − R(b, bt), (4)

where R(b, bt) denotes a regularization term and η > 0 is the learning rate. One
straightforward interpretation of the optimization is to track the stock with the best
performance in the last period but keep the new portfolio close to the previous portfolio.
This is obtained using the regularization term R(b, bt).

Helmbold et al. [1996, 1998] proposed the Exponential Gradient (EG) strategy, which
is based on the algorithm proposed for the mixture estimation problem [Helmbold
et al. 1997]. The EG strategy employs the relative entropy as the regularization term
in Equation (4),

R(b, bt) =
m∑

i=1

bi log
bi

bt,i
.

EG’s formulation is thus convex in b,however, it is hard to solve since log is nonlinear.
Thus, the authors adopted log’s first-order Taylor expansion at bt,

log b · xt ≈ log(bt · xt) + xt

bt · xt
(b − bt),

with which the first term in Equation (4) becomes linear and easy to solve. Solving the
optimization, the update rule [Helmbold et al. 1998, Equation (3.3)] becomes

bt+1,i = bt,i exp
(

η
xt,i

bt · xt

)
/Z, i = 1, . . . , m,

where Z denotes the normalization term such that the portfolio sums to 1.
The optimization problem in Equation (4) can also be solved using the Gradient

Projection (GP) and Expectation Maximization (EM) method [Helmbold et al. 1997].
GP and EM adopt different regularization terms. In particular, GP adopts L2-norm
regularization, and EM adopts χ2 regularization:

R(b, bt) =
{

1
2

∑m
i=1(bi − bt,i)2 GP

1
2

∑m
i=1

(bi−bt,i )2

bt,i
EM

.

The final update rule of GP [Helmbold et al. 1997, Eq. (5)] is

bt+1,i = bt,i + η

(
xt,i

bt · xt
− 1

m

m∑
i=1

xt,i

bt · xt

)
,
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and the update rule of EM [Helmbold et al. 1997, Eq. (7)] is

bt+1,i = bt,i

(
η

(
xt,i

bt · xt
− 1

)
+ 1

)
,

which can also be viewed as the first-order approximation of EG’s update formula.
The regret of the EG strategy can be bounded by O(

√
n log m) with O(m) running

time per period. The regret is not as tight as that of Cover’s UP; however, its linear
running time substantially surpasses that of Cover’s UP. Besides, the authors also
proposed a variant, which has a regret bound of O(m0.5(log m)0.25n0.75). Although not
proposed for online portfolio selection task, according to Helmbold et al. [1997], GP can
straightforwardly achieve a regret of O(

√
mn), which is significantly worse than that of

EG.
One key parameter for EG is the learning rate η > 0. In order to achieve the desired

regret bound presented previously, η has to be small. However, as η → 0, its update
approaches uniform portfolio, and EG reduces to UCRP.

Das and Banerjee [2011] extended the EG algorithm to the sense of the MLA named
Online Gradient Updates (OGU), which will be introduced in Section 3.5.3. OGU com-
bines underlying experts such that the overall system can achieve the performance
that is no worse than any convex combination of base experts.

To handle the case of nonzero transaction costs, Das et al. [2013] extended the GP
algorithm by appending a L1 regularization to formulation, and proposed Online Lazy
Update (OLU) algorithm.

3.2.3. Follow the Leader. Strategies in the Follow-the-Leader (FTL) approach try to
track the BCRP strategy until time t—that is,

bt+1 = b∗
t = arg max

b∈�m

t∑
j=1

log
(
b · x j

)
. (5)

Clearly, this category follows the BCRP leader, and the ultimate leader is the BCRP
over all periods.

Ordentlich [1996, Chapter 4.4] briefly mentioned a strategy to obtain portfolios by
mixing the BCRP up to time t and uniform portfolio

bt+1 = t
t + 1

b∗
t + 1

t + 1
1
m

1.

He also showed its worst case bound, which is slightly worse than that of Cover’s UP.
Gaivoronski and Stella [2000] proposed Successive Constant Rebalanced Portfolios

(SCRP) and Weighted Successive Constant Rebalanced Portfolios (WSCRP) for station-
ary markets. For each period, SCRP directly adopts the BCRP portfolio until now, that
is,

bt+1 = b∗
t .

The authors further solved the optimal portfolio b∗
t via stochastic optimization [Birge

and Louveaux 1997], resulting in the detail updates of SCRP [Gaivoronski and Stella
2000, Algorithm 1]. On the other hand, WSCRP outputs a convex combination of SCRP
portfolio and last portfolio,

bt+1 = (1 − γ ) b∗
t + γ bt,

where γ ∈ [0, 1] represents the trade-off parameter.
The regret bounds achieved by SCRP [Gaivoronski and Stella 2000, Theorem 1] and

WSCRP [Gaivoronski and Stella 2000, Theorem 4] are both O(K2 log n), where K is a
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uniform upper bound of the gradient of log b�x with respect to b. It is straightforward
to see that given the same assumption of upper/lower bound of price relatives as Cover’s
UP [Cover 1991, Theorem 6.1], the regret bound is on the same scale of Cover’s UP,
although the constant term is slightly worse.

Rather than assuming that the historical market is stationary, some algorithms as-
sume that the historical market is nonstationary. Gaivoronski and Stella [2000] propose
Variable Rebalanced Portfolios (VRP), which calculates the BCRP portfolio based on a
latest sliding window. To be more specific, VRP updates its portfolio as follows:

bt+1 = arg max
b∈�m

t∑
j=t−W+1

log(b · x j),

where W denotes a specified window size. Following their algorithms for CRP, they
further proposed Successive Variable Rebalanced Portfolios (SVRP) and Weighted Suc-
cessive Variable Rebalanced Portfolios (WSVRP). No theoretical results were given on
the two algorithms.

Gaivoronski and Stella [2003] further generalized Gaivoronski and Stella [2000]
and proposed Adaptive Portfolio Selection (APS) for online portfolio selection task. By
changing the objective part, APS can handle three types of portfolio selection task—
that is, adaptive Markowitz portfolio, log-optimal CRP, and index tracking. To handle
the transaction cost issue, they proposed Threshold Portfolio Selection (TPS), which
only rebalances the portfolio if the expected return of new portfolio exceeds that of a
previous portfolio for more than a threshold.

3.2.4. Follow the Regularized Leader. Another category of approaches follows a similar
idea as FTL, while adding a regularization term, and thus actually becomes the Fol-
low the Regularized Leader (FTRL) approach. In generally, FTRL approaches can be
formulated as follows:

bt+1 = arg max
b∈�m

t∑
τ=1

log(b · xτ ) − β

2
R(b), (6)

where β denotes the trade-off parameter and R(b) is a regularization term on b. Note
that here all historical information is captured in the first term, thus the regularization
term only concerns the next portfolio, which is different from the EG algorithm. One
typical regularization is an L2-norm—that is, R(b) = ‖b‖2.

Agarwal et al. [2006] proposed the Online Newton Step (ONS) by solving the op-
timization problem in Equation (6) with L2-norm regularization via online convex
optimization technique [Zinkevich 2003; Hazan et al. 2006, 2007; Hazan 2006]. Simi-
lar to the Newton method for offline optimization, the basic idea is to replace the log
term via its second-order Taylor expansion at bt, then solve the problem for closed-form
update scheme. Finally, the ONS update rule [Agarwal et al. 2006, Lemma 2] is

b1 =
(

1
m

, . . . ,
1
m

)
, bt+1 = 	

A t
�m

(
δA−1

t pt
)
,

with

A t =
t∑

τ=1

(
xτ x�

τ(
bτ · xτ

)2

)
+ Im, pt =

(
1 + 1

β

) t∑
τ=1

xτ

bτ · xτ

,

where β is the trade-off parameter, δ is a scale term, and 	
A t
�m

(·) is an exact projection
to the simplex domain.
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ONS iteratively updates the first- and second-order information and the portfolio
with a time cost of O(m3), which is irrelevant to the number of historical instances
t. The authors also proved ONS’s regret bound [Agarwal et al. 2006, Theorem 1] of
O(m1.5 log(mn)), which is worse than Cover’s UP and Dirichlet (1/2) weighted UP.

While FTRL or even the Follow-the-Winner category mainly focuses on the worst-case
investing, Hazan and Kale [2009, 2012] linked the worst-case model with practically
widely used average-case investing—that is, the Geometric Brownian Motion (GBM)
model [Bachelier 1900; Osborne 1959; Cootner 1964], which is a probabilistic model
of stock returns. The authors also designed an investment strategy that is universal
in the worst case and is capable of exploiting the GBM model. Their algorithm, or
so-called Exp-Concave-FTL, follows a slightly different form of optimization problem
(6) with L2-norm regularization,

bt+1 = arg max
b∈�m

t∑
τ=1

log(b · xτ ) − 1
2

‖b‖2.

Similar to ONS, the optimization problem can be efficiently solved via online convex
optimization technique. The authors further analyzed its regret bound and linked it
with the GBM model. Linking the GBM model, the regret round [Hazan and Kale 2012,
Theorem 1.1 and Corollary 1.2] is O (mlog (Q+ m)), where Q denotes the quadratic
variability, calculated as n − 1 times the sample variance of the sequence of price
relative vectors. Since Q is typically much smaller than n, the regret bound significantly
improves the O (mlog n) bound.

Besides the improved regret bound, the authors also discussed the relationship of
their algorithm’s performance to trading frequency. The authors asserted that increas-
ing the trading frequency would decrease the variance of the minimum variance CRP—
that is, the more frequently they trade, the more likely the payoff will be close to the
expected value. On the other hand, the regret stays the same even if they trade more.
Consequently, it is expected to see improved performance of such algorithm as the
trading frequency increases [Agarwal et al. 2006].

Das and Banerjee [2011] further extended the FTRL approach to a generalized
MLA—that is, Online Newton Update (ONU), which guarantees that the overall per-
formance is no worse than any convex combination of its underlying experts.

3.2.5. Aggregating-Type Algorithms. Although BCRP is the optimal strategy for an i.i.d.
market,the i.i.d. assumption is controversial in real markets, so the optimal portfolio
may not belong to CRP or fixed fraction portfolio. Some algorithms have been designed
to track a different set of experts. The algorithms in this category share similar idea to
the MLAs in Section 3.5. However, here the base experts are of a special class—that is,
individual expert that invests fully on a single stock—although in general MLAs often
apply to more complex experts from multiple classes.

Vovk and Watkins [1998] applied the AA [Vovk 1990, 1997, 1999, 2001] to the online
portfolio selection task, of which Cover’s UP is a special case. The general setting for AA
is to define a countable or finite set of base experts and sequentially allocate the resource
among multiple base experts in order to achieve a good performance that is no worse
than any fixed combination of underlying experts. Although its general form is shown
in Section 3.5.1, its portfolio update formula [Vovk and Watkins 1998, Algorithm 1]
for online portfolio selection is

bt+1 =
∫
�m

b
∏t−1

i=1(b · xt)η P0(db)∫
�m

∏t−1
i=1(b · xt)η P0(db)

,
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where P0(db) denotes the prior weights of the experts. As a special case, Cover’s UP
corresponds to AA with uniform prior distribution and η = 1.

Singer [1997] proposed Switching Portfolios (SP) to track a changing market, in
which the stock’s behaviors may change frequently. Rather than the CRP class, SP
decides a set of basic strategies—for example, the pure strategy that invests all wealth
in one asset—and chooses a prior distribution over the set of strategies. Based on the
actual return of each strategy and the prior distribution, SP is able to select a portfolio
for each period. Upon this procedure, the author proposed two algorithms, both of which
assume that the duration of using a basic strategy follows geometric distribution with
a parameter of γ , which can be fixed or varied in time. With fixed γ , the first version of
SP has an explicit update formula [Singer 1997, Eq. (6)],

bt+1 =
(

1 − γ − γ

m− 1

)
bt + γ

m− 1
.

With a varying γ , SP has no explicit update. The author also adopted the algorithm for
transaction costs. Theoretically, the author further gave the lower bound of SP’s loga-
rithmic wealth with respect to any underlying switching regime in hindsight [Singer
1997, Theorem 2]. Empirical evaluation on Cover’s two-stock pairs shows that SP can
outperform UP, EG, and BCRP, in most cases.

Levina and Shafer [2008] proposed the Gaussian Random Walk (GRW) strategy,
which switches among the base experts according to Gaussian distribution. Kozat and
Singer [2007] extended SP to piecewise fixed fraction strategies, which partitions the
periods into different segments and transits among these segments. The authors proved
the piecewise universality of their algorithm, which can achieve the performance of the
optimal piecewise fixed fraction strategy. Kozat and Singer [2008] extended Kozat and
Singer [2007] to the case of transaction costs. Kozat and Singer [2009, 2010] further
generalized Kozat and Singer [2007] to sequential decision problem. Kozat et al. [2008]
proposed another piecewise universal portfolio selection strategy via context trees, and
Kozat et al. [2011] generalized to sequential decision problem via tree weighting.

The most interesting thing is that switching portfolios adopts the notion of regime
switching [Hamilton 1994, 2008], which is different from the underlying assumption
of universal portfolio selection methods and seems to be more plausible than an i.i.d.
market. The regime switching is also applied to some state-of-the-art trading strategies
[Hardy 2001; Mlnařĺk et al. 2009]. However, this approach suffers from its distribution
assumption, because geometric and Gaussian distributions do not seem to fit the mar-
ket well [Mandelbrot 1963; Cont 2001]. This leads to other potential distributions that
can better model the markets.

3.3. Follow-the-Loser Approaches

The underlying assumption for the optimality of BCRP strategy is that market is i.i.d.,
which however does not always hold for the real-world data and thus often results in
inferior empirical performance, as observed in various previous works. Instead of track-
ing the winners, the Follow-the-Loser approach is often characterized by transferring
the wealth from winners to losers. The underlying of this approach is mean reversion
[Bondt and Thaler 1985; Poterba and Summers 1988; Lo and MacKinlay 1990], which
means that the good (poor)-performing assets will perform poor (good) in the following
periods.

To better understand the mean reversion principle, let us further analyze the behav-
iors of CRP in Example 3.1 [Li et al. 2012].

Example 3.2 (Synthetic Market by Cover and Gluss [1986]). As illustrated in
Example 3.1, uniform CRP grows exponentially on the synthetic market. Now we
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Table II. Example to Illustrate the Mean Reversion Trading Idea

# Period Price Relative (A,B) CRP CRP Return Portfolio Holdings Notes

1 (1, 2)
(

1
2 , 1

2

)
3
2

(
1
3 , 2

3

)
B −→ A

2
(
1, 1

2

) (
1
2 , 1

2

)
3
4

(
2
3 , 1

3

)
A −→ B

3 (1, 2)
(

1
2 , 1

2

)
3
2

(
1
3 , 2

3

)
B −→ A

...
...

...
...

...
...

analyze its portfolio update behaviors, which follows mean reversion, as shown in
Table II.

Suppose that the initial CRP portfolio is ( 1
2 , 1

2 ) and that at the end of the 1st period, the
closing price adjusted portfolio holding becomes ( 1

3 , 2
3 ) and corresponding cumulative

wealth increases by a factor of 3
2 . At the beginning of the 2nd period, the CRP manager

rebalances the portfolio to initial uniform portfolio by transferring the wealth from
good-performing stock (B) to poor-performing stock (A), which actually follows the
mean reversion principle. Then, its cumulative wealth changes by a factor of 3

4 and the
portfolio holding at the end of the 2nd period becomes ( 2

3 , 1
3 ). At the beginning of the 3rd

period, the wealth transfer with the mean reversion idea continues.
In summary, CRP implicitly assumes that if one stock performs poor (good), it tends

to perform good (poor) in the subsequent period and thus transfers the weights from
good-performing stocks to poor-performing stocks.

3.3.1. Anti-Correlation. Borodin et al. [2003, 2004] proposed a Follow-the-Loser portfolio
strategy named Anti-Correlation (Anticor) strategy. Rather than no distributional as-
sumption like Cover’s UP, Anticor strategy assumes that market follows the mean
reversion principle. To exploit the mean reversion property, it statistically makes a bet
on the consistency of positive lagged cross-correlation and negative autocorrelation.

To obtain a portfolio for the t + 1st period, the Anticor algorithm adopts logarithmic
price relatives [Hull 2008] in two specific market windows—that is, y1 = log(xt−w

t−2w+1)
and y2 = log(xt

t−w+1). It then calculates the cross-correlation matrix between y1 and y2:

Mcov (i, j) = 1
w − 1

(
y1,i − ȳ1

)� (
y2, j − ȳ2

)
Mcor (i, j) =

{ Mcov(i, j)
σ1(i)∗σ2( j) σ1 (i), σ2 ( j) �= 0
0 otherwise

Then, according to the cross-correlation matrix, Anticor algorithm transfers the wealth
according to the mean reversion trading idea, or moves the proportions from the stocks
increased more to the stocks increased less, and the corresponding amounts are ad-
justed according to the cross-correlation matrix. In particular, if asset i increases
more than asset j and their sequences in the window are positively correlated, An-
ticor claims a transfer from asset i to j with the amount equals the cross correlation
value (Mcor (i, j)) minus their negative autocorrelation values (min {0, Mcor (i, i)} and
min {0, Mcor ( j, j)}). These transfer claims are finally normalized to keep the portfolio
in the simplex domain.

Because of its mean reversion nature, it is difficult to obtain a useful bound such
as the universal regret bound. Although heuristic and has no theoretical guarantee,
Anticor empirically outperforms all other strategies at the time. On the other hand,
although Anticor algorithm obtains good performance outperforming all algorithms at
the time, its heuristic nature cannot fully exploit the mean reversion property. Thus,
exploiting the property using systematic learning algorithms is highly desired.
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3.3.2. Passive Aggressive Mean Reversion. Li et al. [2012] proposed Passive Aggressive
Mean Reversion (PAMR) strategy, which exploits the mean reversion property with the
Passive Aggressive (PA) online learning [Shalev-Shwartz et al. 2003; Crammer et al.
2006].

The main idea of PAMR is to design a loss function in order to reflect the mean
reversion property—that is, if the expected return based on last price relative is larger
than a threshold, the loss will linearly increase; otherwise, the loss is zero. In particular,
the authors defined the ε-insensitive loss function for the tth period as

ε

(
b; xt

) =
{

0 b · xt ≤ ε
b · xt − ε otherwise ,

where 0 ≤ ε ≤ 1 is a sensitivity parameter to control the mean reversion threshold.
Based on the loss function, PAMR passively maintains the last portfolio if the loss is
zero; otherwise, it aggressively approaches a new portfolio that can force the loss zero.
In summary, PAMR obtains the next portfolio via the following optimization problem:

bt+1 = arg min
b∈�m

1
2

∥∥b − bt
∥∥2 s.t. ε(b; xt) = 0. (7)

Solving the optimization problem (7), PAMR has a clean closed form update scheme [Li
et al. 2012, Proposition 1]:

bt+1 = bt − τt (xt − x̄t1) , τt = max
{

0,
bt · xt − ε

‖xt − x̄t1‖2

}
.

Since the authors ignored the nonnegativity constraint of the portfolio in the derivation,
they also added a simplex projection step [Duchi et al. 2008]. The closed form update
scheme clearly reflects the mean reversion trading idea by transferring the wealth
from the good-performing stocks to the poor-performing stocks. It also coincides with
the general form [Lo and MacKinlay 1990, Eq. (1)] of return-based contrarian strate-
gies [Conrad and Kaul 1998; Lo 2008], except an adaptive multiplier τt. Besides the
optimization problem (7), the authors also proposed two variants to avoid noise price
relatives by introducing some nonnegative slack variables into optimization, which is
similar to soft margin support vector machines.

Similar to the Anticor algorithm, due to PAMR’s mean reversion nature, it is hard to
obtain a meaningful theoretical regret bound. Nevertheless, PAMR achieves significant
performance, beating all algorithms at the time, and shows its robustness along with
the parameters. It also enjoys linear update time and runs extremely fast in the back
tests, which show its practicability to large-scale real-world application.

The underlying idea is to exploit the single-period mean reversion, which is em-
pirically verified by its evaluations on several real market datasets. However, PAMR
suffers from drawbacks in risk management since it suffers significant performance
degradation if the underlying single-period mean reversion fails to exist. Such draw-
back is clearly indicated by its performance in DJIA dataset [Borodin et al. 2003, 2004;
Li et al. 2012].

3.3.3. Confidence Weighted Mean Reversion. Li et al. [2011b] proposed the Confidence
Weighted Mean Reversion (CWMR) algorithm to further exploit the second-order
portfolio information, which refers to the variance of portfolio weights (not price or
price relative), following the mean reversion trading idea via Confidence Weighted
(CW) online learning [Dredze et al. 2008; Crammer et al. 2008, 2009; Dredze et al.
2010].

The basic idea of CWMR is to model the portfolio vector as a multivariate Gaussian
distribution with mean μ ∈ R

m and the diagonal covariance matrix � ∈ R
m×m, which
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has nonzero diagonal elements σ 2 and zero for off-diagonal elements. Whereas the
mean represents the knowledge for the portfolio, the diagonal covariance matrix term
stands for the confidence we have in the corresponding portfolio mean. Then, CWMR
sequentially updates the mean and covariance matrix of the Gaussian distribution
and draws portfolios from the distribution at the beginning of a period. In particular,
the authors define bt ∈ N (μt,�t) and update the distribution parameters according
to the similar idea of PA learning—that is, CWMR keeps the next distribution close
to the last distribution in terms of Kullback-Leibler divergence if the probability of
a portfolio return lower than ε is higher than a specified threshold. In summary, the
optimization problem to be solved is(

μt+1,�t+1
) = arg min

μ∈�m,�

DKL (N (μ,�) ‖N (μt,�t))

s.t. Pr [μ · xt ≤ ε] ≥ θ.

To solve the optimization, Li et al. [2013] transformed the optimization problem using
two techniques. One transformed optimization problem [Li et al. 2013, Eq. (3)] is

(
μt+1,�t+1

) = arg min
1
2

(
log

(
det�t

det�

)
+ Tr

(
�−1

t �
)

+ (μt − μ)� �−1
t (μt − μ)

)
s. t. ε − μ�xt ≥ φx�

t �xt

μ�1 = 1, μ � 0.

Solving the presented optimization, one can obtain the closed form update scheme [Li
et al. 2013, Proposition 4.1] as

μt+1 = μt − λt+1�t (xt − x̄t1) , �−1
t+1 = �−1

t + 2λt+1φxtx�
t ,

where λt+1 corresponds to the Lagrangian multiplier calculated by Equation (11) in
Li et al. [2013] and x̄t = 1��txt

1��t1
denotes the confidence weighted price relative average.

Clearly, the update scheme reflects the mean reversion trading idea and can exploit
both the first- and second-order information of a portfolio vector.

Similar to Anticor and PAMR, CWMR’s mean reversion nature makes it hard to
obtain a meaningful theoretical regret bound for the algorithm. Empirical performance
shows that the algorithm can outperform the state of the art, including PAMR, which
only exploits the first-order information of a portfolio vector. However, CWMR also
exploits the single-period mean reversion, which suffers the same drawback as PAMR.

3.3.4. Online Moving Average Reversion. Observing that PAMR and CWMR implicitly
assume single-period mean reversion, which causes one failure case on real dataset [Li
et al. 2012, DJIA dataset], Li and Hoi [2012] defined a multiple-period mean reversion
named Moving Average Reversion and proposed OnLine Moving Average Reversion
(OLMAR) to exploit the multiple-period mean reversion.

The basic intuition of OLMAR is the observation that PAMR and CWMR implicitly
predict next prices as last price—that is, p̂t+1 = pt−1, where p denotes the price vector
corresponding to the related x. Such extreme single-period prediction may cause some
drawbacks that caused the failureof certain cases in Li et al. [2012]. Instead, the
authors proposed a multiple-period mean reversion, which explicitly predicts the next
price vector as the moving average within a window. They adopted simple moving
average, which is calculated as MA t = 1

w

∑t
i=t−w+1 pi. Then, the corresponding next
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price relative [Li and Hoi 2012, Eq. (1)] equals

x̂t+1 (w) = MAt (w)
pt

= 1
w

(
1 + 1

xt
+ · · · + 1⊙w−2

i=0 xt−i

)
, (8)

where w is the window size and
⊙

denotes elementwise product.
Then, they adopted Passive Aggressive online learning [Crammer et al. 2006] to

learn a portfolio, which is similar to PAMR:

bt+1 = arg min
b∈�m

1
2

∥∥b − bt
∥∥2 s.t. b · x̂t+1 ≥ ε.

Different from PAMR, its formulation follows the basic intuitive of investment—that
is, to achieve a good performance based on the prediction. Solving the algorithm is
similar to PAMR, and we ignore its solution. At the time, OLMAR achieves the best
results among all existing algorithms [Li and Hoi 2012], especially on certain datasets
that failed PAMR and CWMR.

3.3.5. Robust Median Reversion. As existing mean reversion algorithms do not consider
noises and outliers in the data, they often suffer from estimation errors, which lead
to nonoptimal portfolios and subsequent poor performance in practice. To handle the
noises and outliers, Huang et al. [2013] proposed to exploit mean reversion via a robust
L1-median estimator and designed a novel portfolio selection strategy called Robust
Median Reversion (RMR).

The basic idea of RMR is to explicitly estimate next price vector via a robust L1-
median estimator at the end of tth period—that is, p̂t+1 = L1medt+1 (w) = μt+1, where
w is a window size and μ is calculated by solving a optimization [Weber 1929, Fermat-
Weber problem],

μt+1 = arg min
μ

w−1∑
i=0

‖pt−i − μ‖ .

In other words, L1-median is the point with minimal sum of Euclidean distance to the
k given price vectors. The solution to the optimization problem is unique [Weiszfeld
1937] if the data points are not collinear. Therefore, the expected price relative with
the L1-median estimator becomes

x̂t+1 (w) = L1medt+1 (w)
pt

= μt+1

pt
. (9)

Then RMR follows the similar portfolio optimization method as OLMAR [Li and Hoi
2012] to learn an optimal portfolio. Empirically, RMR outperforms the state-of-the-art
on most datasets.

3.4. Pattern-Matching Based Approaches

Besides the two categories of Follow the Winner/Follow the Loser, another type of
strategies may utilize both winners and losers, which is based on pattern matching.
This category mainly covers nonparametric sequential investment strategies, which
guarantee universal consistency (i.e., the corresponding trading rules are of growth
optimal for any stationary and ergodic market process). Note that different from the
optimality of BCRP for the i.i.d. market, which motivates the Follow-the-Winner ap-
proaches, Pattern-Matching–based approaches consider the non-i.i.d. market and max-
imize the conditional expectation of log-return given past observations (cf. Algoet and
Cover [1988]). For the non-i.i.d. market, there is a big difference between the optimal
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growth rate and the growth rate of BCRP. For example, for NYSE datasets during 1962–
2006, the Average Annual Yield (AAY) of BCRP is about 20%, whereas the strategies in
this category have AAY of more than 30% (cf. Györfi et al. [2012, Chapter 2]). Grounded
on nonparametric prediction [Györfi and Schäfer 2003], this category consists of sev-
eral pattern-matching–based investment strategies [Györfi et al. 2006, 2007, 2008; Li
et al. 2011a]. Moreover, some techniques are also applied to the sequential prediction
problem [Biau et al. 2010].

Now let us describe the main idea of the Pattern-Matching–based approaches [Györfi
et al. 2006], which consists of two steps: the Sample Selection step and the Portfolio
Optimization step.1 The first step—Sample Selection—selects an index set C of similar
historical price relatives, whose corresponding price relatives will be used to predict the
next price relative. After locating the similarity set, each sample price relative xi, i ∈ C
is assigned with a probability Pi, i ∈ C. Existing methods often set the probabilities
to uniform probability Pi = 1

|C| , where |·| denotes the cardinality of a set. Besides
uniform probability, it is possible to design a different probability setting. The second
step—Portfolio Optimization—is to learn an optimal portfolio based on the similarity
set obtained in the first step—that is,

bt+1 = arg max
b∈�m

U (b; C),

where U (b; C) is a specified utility function of b based on C. One particular utility
function is the log utility—for instance, U (b; C) = ∑

i∈C log b�xi, which is usually the
default utility. In case of an empty similarity set, a uniform portfolio is adopted as the
optimal portfolio.

In the following sections, we concretize the Sample Selection step in Section 3.4.1
and the Portfolio Optimization step in Section 3.4.2. We further combine the two steps
in order to formulate specific online portfolio selection algorithms in Section 3.4.3.

3.4.1. Sample Selection Techniques. The general idea in this step is to select similar
samples from historical price relatives by comparing the preceding market windows
of two price relatives. Suppose that we are going to locate the price relatives that
are similar to next price relative xt+1. The basic routine is to iterate all historic price
relative vectors xi, i = w + 1, . . . , t and count xi as similar one, if the preceding market
window xi−1

i−w is similar to the latest market window xt
t−w+1. The set C is maintained

to contain the indexes of similar price relatives. Note that the market window is a
w × m-matrix, and the similarity between two market windows is often calculated on
the concatenated w × m-vector. The Sample Selection procedure (C(xt

1, w)) is further
illustrated in Algorithm 2.

Nonparametric histogram-based sample selection [Györfi and Schäfer 2003] prede-
fines a set of discretized partitions, partitions both the latest market window xt

t−w+1 and
the historical market window xi−1

i−w, i = w + 1, . . . , t, and finally chooses price relative
vectors whose xi−1

i−w is in the same partition as xt
t−w+1. In particular, given a partition

P = Aj,, j = 1, 2, . . . , d of R
m
+ into d disjoint sets and a corresponding discretization

function G (x) = j, if x ∈ A, j , we can define the similarity set as

CH
(
xt

1, w
) =

{
w < i < t + 1 : G

(
xt

t−w+1

) = G

(
xi−1

i−w

)}
.

Note that  is adopted to aggregate multiple experts.

1Here we only introduce the key idea. All algorithms in this category consist of an additional aggregation
step, which is a special case of MLAs in Section 3.5.
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ALGORITHM 2: Sample selection framework (C(xt
1, w)).

Input: xt
1: Historical market sequence; w: window size;

Output: C: Index set of similar price relatives.

Initialize C = ∅;
if t ≤ w + 1 then

return;
end
for i = w + 1, w + 2, . . . , t do

if xi−1
i−w is similar to xt

t−w+1 then
C = C ∪ {i};

end
end

Nonparametric kernel-based sample selection [Györfi et al. 2006] identifies the sim-
ilarity set by comparing two market windows via Euclidean distance:

CK
(
xt

1, w
) = {

w < i < t + 1 : ‖xt
t−w+1 − xi−1

i−w‖ ≤ c


}
,

where c and  are the thresholds used to control the number of similar samples. Note
that the authors adopted two threshold parameters for theoretical analysis.

Nonparametric nearest neighbor–based sample selection [Györfi et al. 2008] searches
the price relatives whose preceding market windows are within the  nearest neighbor
of latest market window in terms of Euclidean distance:

CN
(
xt

1, w
) = {

w < i < t + 1 : xi−1
i−w is among the  NNs of xt

t−w+1

}
,

where  is a threshold parameter.
Correlation-driven nonparametric sample selection [Li et al. 2011a] identifies the

linear similarity among two market windows via correlation coefficient:

CC
(
xt

1, w
) =

{
w < i < t + 1 :

cov
(
xi−1

i−w, xt
t−w+1

)
std

(
xi−1

i−w

)
std

(
xt

t−w+1

) ≥ ρ

}
,

where ρ is a predefined correlation coefficient threshold.

3.4.2. Portfolio Optimization Techniques. The second step of the Pattern-Matching–based
approaches is to construct an optimal portfolio based on the similar set C. Two main
approaches are the Kelly’s CGT and Markowitz’s mean-variance theory. Next, we illus-
trate several techniques adopted in these approaches.

Györfi et al. [2006] proposed to figure out a log-optimal (Kelly) portfolio based on
similar price relatives located in the first step, which is clearly following the CGT.
Given a similarity set, the log-optimal utility function is defined as

UL
(
b; C

(
xt

1

)) = E
{

log b · x
∣∣xi, i ∈ C

(
xt

1

)} =
∑

i∈C(xt
1)

Pi log b · xi,

where Pi denotes the probability assigned to a similar price relative xi, i ∈ C(xt
1).

Györfi et al. [2006] assume a uniform probability among the similar samples, thus it is
equivalent to the following utility function:

UL
(
b; C

(
xt

1

)) =
∑

i∈C(xt
1)

log b · xi.
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Györfi et al. [2007] introduced semi-log-optimal strategy, which approximates log in
the log-optimal utility function aiming to release the computational issue, and Vajda
[2006] presented theoretical analysis and proved its universal consistency. The semi-
log-optimal utility function is defined as

US
(
b; C

(
xt

1

)) = E
{

f (b · x)
∣∣xi, i ∈ C

(
xt

1

)} =
∑

i∈C(xt
1)

Pi f (b · xi),

where f (·) is defined as the second-order Taylor expansion of log z with respect to
z = 1—that is, f (z) = z−1− 1

2 (z − 1)2. Györfi et al. [2007] assume a uniform probability
among the similar samples, thus, equivalently,

US
(
b; C

(
xt

1

)) =
∑

i∈C(xt
1)

f
(
b · xi

)
.

Ottucsák and Vajda [2007] proposed the nonparametric Markowitz-type strategy,
which is a further generalization of the semi-log-optimal strategy. The basic idea of
the Markowitz-type strategy is to represent portfolio return using Markowitz’s idea
to trade off between portfolio mean and variance. To be specific, the Markowitz-type
utility function is defined as

UM
(
b; C

(
xt

1

)) = E
{
b · x

∣∣xi, i ∈ C
(
xt

1

)} − λVar
{
b · x

∣∣xi, i ∈ C
(
xt

1

)}
= E

{
b · x

∣∣xi, i ∈ C
(
xt

1

)} − λE
{(

b · x
)2∣∣xi, i ∈ C

(
xt

1

)}
+ λ

(
E

{
b · x

∣∣xi, i ∈ C
(
xt

1

)})2
,

where λ is a trade-off parameter. In particular, a simple numerical transformation
shows that semi-log-optimal portfolio is an instance of the log-optimal utility function
with a specified λ.

To solve the problem with transaction costs, Györfi and Vajda [2008] propose a GV-
type utility function (Algorithm 2 in Györfi and Vajda [2008]; their Algorithm 1 follows
the same procedure as log-optimal utility) by incorporating the transaction costs, as
follows:

UT
(
b; C

(
xt

1

)) = E
{
log b · x + log c

(
bt, b, xt

)}
,

where c (·) ∈ (0, 1) is the transaction cost factor in Equation (1), which represents
the remaining proportion after transaction costs imposed by the market. The details
of the calculation of the factor are illustrated in Section 2.1. According to a uniform
probability assumption of the similarity set, it is equivalent to calculate

UT
(
b; C

(
xt

1

)) =
∑

i∈C(xt
1)

(
log b · x + log c

(
bt, b, xt

))
.

In any of the procedures presented, if the similarity set is nonempty, we can gain an
optimal portfolio based on the similar price relatives and their probability. In case of
an empty set, we can choose either uniform portfolio or previous portfolio.

3.4.3. Combinations. In this section, let us combine the first and second steps and
describe the detail algorithms in the Pattern-Matching–based approaches. Table III
shows existing combinations, where “—” means that no algorithm is proposed to exploit
the combination.

One default utility function is the log-optimal function. Györfi and Schäfer [2003]
introduced the nonparametric histogram-based log-optimal investment strategy (BH),
which combines the histogram-based sample selection and log-optimal utility function
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Table III. Pattern-Matching–Based Approaches: Sample Selection and Portfolio Optimization

Sample Selection Techniques
Portfolio Optimization Histogram Kernel Nearest Neighbor Correlation
Log-optimal BH: CH + UL BK: CK + UL BNN: CN + UL CORN: CC + UL

Semi-log-optimal — BS: CK + US — —
Markowitz-type — BM: CK + UM — —
GV-type — BGV: CK + UR — —

and proved its universal consistency. Györfi et al. [2006] presented the nonparametric
kernel-based log-optimal investment strategy (BK), which combines the kernel-based
sample selection and log-optimal utility function and proved its universal consistency.
Györfi et al. [2008] proposed the nonparametric nearest neighbor log-optimal invest-
ment strategy (BNN), which combines the nearest neighbor sample selection and log-
optimal utility function and proved its universal consistency. Li et al. [2011a] cre-
ated the correlation-driven nonparametric learning approach (CORN) by combining
the correlation-driven sample selection and log-optimal utility function and showed
its superior empirical performance over the previous three combinations. Besides the
log-optimal utility function, several algorithms using different utility functions have
been proposed. Györfi et al. [2007] proposed the nonparametric kernel-based semi-log-
optimal investment strategy (BS) by combining the kernel-based sample selection and
semi-log-optimal utility function to ease the computation of (BK). Ottucsák and Vajda
[2007] proposed the nonparametric kernel-based Markowitz-type investment strategy
(BM) by combining the kernel-based sample selection and Markowitz-type utility func-
tion to make trade-offs between the return (mean) and risk (variance) of expected
portfolio return. Györfi and Vajda [2008] proposed the nonparametric kernel-based GV-
type investment strategy (BGV) by combining the kernel-based sample selection and
GV-type utility function to construct portfolios in case of transaction costs. If the se-
quence of relative price vectors is a first-order Markov chain with known distributions,
then their strategies are growth optimal. For unknown distributions, Györfi and Walk
[2012] introduced empirical growth optimal algorithms. Ormos and Urbán [2011] em-
pirically analyzed the performance of log-optimal portfolio strategies with transaction
costs.

Note that this section only introduces the key steps (or individual expert) in the
Pattern-Matching–based approaches, whereas all algorithms presented previously also
consist of an additional aggregation step. With different parameters (w, , or ρ), one
can get a family of portfolios, which are then aggregated into a final portfolio using
exponential weighting [Györfi et al. 2006]. Such rule is actually a meta-algorithm,
which we will introduce in the following section.

3.5. Meta-Learning Algorithms

Another category of research in the area of online portfolio selection is the MLA [Das
and Banerjee 2011], which is closely related to expert learning [Cesa-Bianchi and
Lugosi 2006] in the machine learning community. This is directly applicable to an FOF,
which delegates its portfolio assets to other funds. In general, MLA assumes several
base experts, either from the same strategy class or different classes. Each expert out-
puts a portfolio vector for the coming period, and MLA combines these portfolios to form
a final portfolio, which is used for the next rebalancing. MLAs are similar to algorithms
in Follow-the-Winner approaches; however, they are proposed to handle a broader class
of experts, which CRP can serve as one special case. On the one hand, the MLA system
can be used to smooth the final performance with respect to all underlying experts, es-
pecially when base experts are sensitive to certain environments/parameters. On the
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other hand, combining a universal strategy and a heuristic algorithm, where it is not
easy to obtain a theoretical bound, such as Anticor, can provide the universal property
to the whole MLA system. Finally, MLA is able to combine all existing algorithms, thus
providing a much broader area of application.

3.5.1. Aggregating Algorithms. Besides the algorithms discussed in Section 3.2.5, the
AA [Vovk 1990; Vovk and Watkins 1998] can also be generalized to include more
sophisticated base experts. Given a learning rate η > 0, a measurable set of experts A,
and a prior distribution P0 that assigns the initial weights to the experts, AA defines
a loss function as  (x, γ ) and γt (θ ) as the action chosen by expert θ at time t. At the
beginning of each period t = 1, 2, . . . , AA updates the experts’ weights as

Pt+1 (A) =
∫

A
β(xt,γt(θ)) Pt (dθ ) ,

where β = e−η and Pt denotes the weights to the experts at time t.

3.5.2. Fast Universalization. Akcoglu et al. [2002, 2004] proposed Fast Universalization
(FU), which extends Cover’s UP [Cover 1991] from a parameterized CRP class to a wide
class of investment strategies, including trading strategies operating on a single stock
and portfolio strategies allocating wealth among the whole stock market. FU’s basic
idea is to evenly split the wealth among a set of base experts, let these experts operate
on their own, and finally pool their wealth. FU’s update is similar to that of Cover’s
UP, and it also asymptotically achieves the wealth equal to an optimal fixed convex
combination of base experts. In cases in which all experts are CRPs, FU is reduced to
Cover’s UP.

Besides the universalization in the continuous parameter space, various discrete
BAH combinations have been adopted by various existing algorithms. Rewritten in
discrete form, its update can be straightforwardly obtained. For example, Borodin
et al. [2003, 2004] adopted BAH strategy to combine Anticor experts with a finite
number of window sizes. Li et al. [2012] combined PAMR experts with a finite number
of mean reversion thresholds. Moreover, all Pattern-Matching–based approaches in
Section 3.4 used BAH to combine their underlying experts, also with a finite number
of window sizes.

3.5.3. Online Gradient and Newton Updates. Das and Banerjee [2011] proposed two meta-
optimization algorithms, OGU and ONU, which are natural extensions of EG and ONS,
respectively. Since their updates and proofs are similar to their precedents, here we
ignore their updates. Theoretically, OGU and ONU can achieve the growth rate as the
optimal convex combination of the underlying experts. Particularly, if any base expert is
universal, the final meta-system enjoys the universal property. Such a property is useful
because an MLA can incorporate a heuristic algorithm and a universal algorithm,
whereby the final system enjoys the performance while keeping the universal property.

3.5.4. Follow the Leading History. Hazan and Seshadhri [2009] proposed a Follow the
Leading History (FLH) algorithm for changing environments. FLH can incorporate
various universal base experts, such as the ONS algorithm. Its basic idea is to main-
tain a working set of finite experts, which are dynamically flowed in and dropped out
according to their performance, and allocate the weights among the active working
experts with an MLA—for example, the Herbster-Warmuth algorithm [Herbster and
Warmuth 1998]. Different from other MLAs where experts operate from the same be-
ginning, FLH adopts experts starting from different periods. Theoretically, the FLH
algorithm with universal methods is universal. Empirically, FLH equipped with ONS
can significantly outperform ONS.
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4. CONNECTION WITH CAPITAL GROWTH THEORY

Most online portfolio selection algorithms introduced earlier can be interestingly con-
nected to the CGT. In this section, we first introduce the CGT for portfolio selection and
then connect the previous algorithms to the CGT in order to reveal their underlying
trading principles.

4.1. Capital Growth Theory for Portfolio Selection

Originally introduced in the context of gambling, CGT [Hakansson and Ziemba 1995]
(also referred to as Kelly investment [Kelly 1956] or Growth Optimal Portfolio (GOP)
[Györfi et al. 2012]) can generally be adopted for online portfolio selection. Breiman
[1961] generalized Kelly criterion to multiple investment opportunities. Thorp [1971]
and Hakansson [1971] focused on the theory of Kelly criterion or logarithmic utility
for the portfolio selection problem. Now let us briefly introduce the theory for portfolio
selection [Thorp 1971].

The basic procedure of CGT for portfolio selection is to maximize the expected
log return for each period. It involves two related steps: prediction and portfo-
lio optimization. For the prediction step, CGT receives the predicted distribution
of price relative combinations x̂t+1 = (x̂t+1,1, . . . , x̂t+1,m), which can be obtained as
follows. For each investment i, one can predict a finite number of distinct val-
ues and corresponding probabilities. Let the range of x̂t+1,i be {ri,1; . . . ; ri,Ni }, i =
1, . . . , m, and the corresponding probability for each possible value ri, j be pi, j . Based on
these predictions, one can estimate their joint vectors and corresponding joint proba-
bilities. In this way, there are in total

∏m
i=1 Ni possible prediction combinations, each of

which is in the form of x̂(k1,k2,...,km)
t+1 = [x̂t+1,1 = r1,k1 and x̂t+1,2 = r2,k2 and . . . and x̂t+1,m =

rm,km] with a probability of p(k1,k2,...,km) = ∏m
j=1 pj,kj . Given these predictions, CGT tries

to obtain an optimal portfolio that maximizes the expected log return,

E log S =
∑

p(k1,k2,...,km) log
(
b · x̂(k1,k2,...,km)

t+1

)
=

∑ [
p(k1,k2,...,km) log

(
b1r1,k1 + · · · + bmrm,km

)]
,

where the summation is over all
∏m

i=1 Ni price relative combinations. Obviously, max-
imizing the equation is concave in b and thus can be efficiently solved via convex
optimization [Boyd and Vandenberghe 2004].

4.2. Online Portfolio Selection and Capital Growth Theory

Most existing online portfolio selection algorithms have close connection with the CGT
(or Kelly criterion). Although the theory provides a theoretically guaranteed framework
for asset allocation, online portfolio selection algorithms mainly connect to the theory
from two different aspects.

The first connection is established between CGT and the universal portfolio selection
scheme, which mainly includes several Follow-the-Winner approaches. Kelly criterion
aims to maximize the exponential growth rate of an investment scheme, whereas
the universal portfolio selection scheme tries to maximize the exponential growth rate
relative to the rate of BCRP. Although they have different objectives, they are somehow
connected as the target of universal portfolio selection scheme is one special case of
Kelly criterion. Cover and Thomas [1991, Theorem 15.3.1] showed that if the market
sequence (price relative vectors) is i.i.d., then the maximum performance is achieved
by an optimal CRP in hindsight, or the BCRP. We further rewrite the BCRP strategy
in the form of Kelly criterion, as shown in the first row of Table IV. There after, Cover
[1991] set BCRP as a target and proposed the universal portfolio selection scheme.
Note that as introduced in Section 3.1.3, the gap between their cumulative exponential
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Table IV. Online Portfolio Selection and the Capital Growth Theory

Algorithms x̂t+1 Prob. Capital Growth Forms
BCRP∗ xi, i = 1, . . . , n 1/n bt+1 = arg maxb∈�m

1
n

∑n
i=1 log b · xi

EG xt 100% bt+1 = arg maxb∈�m log b · xt − λR(b, bt)
PAMR 1

xt
100% bt+1 = arg minb∈�m b · xt + λR(b, bt)

CWMR 1
xt

100% bt+1 = arg minb∈�m P(b · xt) + λR(b, bt)
OLMAR/RMR Eq. (8)/Eq. (9) 100% bt+1 = arg maxb∈�m b · x̂t+1 − λR(b, bt)
BH/BK/BNN/CORN xi, i ∈ Ct 1/ |Ct| bt+1 = arg maxb∈�m

1
|Ct |

∑
i∈Ct

log b · xi

BGV xi, i ∈ Ct 1/ |Ct| bt+1 = arg maxb∈�m
1

|Ct |
∑

i∈Ct
(log b · xi + log c(·))

FTL xi, i = 1, . . . , t 1/t bt+1 = arg maxb∈�m
1
t
∑t

i=1 log b · xi

FTRL xi, i = 1, . . . , t 1/t bt+1 = arg maxb∈�m
1
t
∑t

i=1 log b · xi − λR(b)

growth rates is termed regret. Such connection also coincides with competitive analysis
in Borodin et al. [2000].

In particular, the first four algorithms in the Follow-the-Winner category (i.e., Uni-
versal Portfolios, Exponential Gradient, Follow the Leader, and Follow the Regularized
Leader) all release regret bounds whose daily average asymptotically approaches zero
as the trading period goes to infinity. In other words, these algorithms can achieve
the same exponential growth rate as BCRP, which is CGT optimal in an i.i.d. market.
Although the Aggregating-type Algorithms extend online portfolio selection from the
CRP class to other strategy classes, they may not be optimal relative to BCRP.

The second connection explicitly adopts the idea of CGT for online portfolio selection,
as shown in Section 4.1. For each period, one algorithm requires the predicted price
relative combinations and their corresponding probabilities. Without loss of generality,
let us make a portfolio decision for the t + 1st period. Table IV summarizes their
rewritten formulations. Note that some algorithms in the first connection (EG, ONS,
etc.) can also be rewritten to this form, although their objectives are different from
CGT. We present their implicit market distributions, denoted by their values (x̂t+1) and
probabilities (Prob.), in the second and third columns, respectively. We then rewrite all
algorithms following the CGT—that is, to maximize the expected log return for the t+1st

period—in the fourth column. The regularization terms are denoted as R(b, bt), which
preserves the information of last portfolio vector (bt), and R(b), which constrains the
variability of a portfolio vector. Based on the number of predictions, we can categorize
most existing algorithms into three categories.

The first category, including EG/PAMR/CWMR/OLMAR/RMR, implicitly or explicitly
predicts a single scenario with certainty and tries to select an optimal portfolio. Note
that the capital growth forms of PAMR and CWMR are rewritten from their original
forms while keeping their essential ideas. Moreover, PAMR, CWMR, and OLMAR all
ignore the log utility function, as adding the log utility function follows the same idea
but causes the convexity issue. Although such single prediction is risky, all of these
algorithms adopt regularization terms, such as R(b, bt) = ‖b − bt‖2, to ensure that
next portfolio is not far from current one, which indeed reduces the risk.

The second category, including Pattern-Matching–based approaches, predicts multi-
ple scenarios that are deemed similar to the next price relative vector. In particular,
it expects the next price relative to be xi, i ∈ C with a uniform probability of 1

|C| ,
where C denotes the similarity set. Then, algorithms in this category try to maximize
its expected log return in terms of the similarity set, which is consistent with the
CGT and results in an optimal fixed fraction portfolio. Note that several algorithms in
the Pattern-Matching–based approaches, including BS, BM, and BGV, adopt different
portfolio optimization approaches, which we do not count in here.
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Table V. Online Portfolio Selection and Their Underlying Trading Principles

Principles Algorithms x̂t+1 Prob. E
{
x̂t+1

}
Momentum EG xt 100% xt

FTL/FTRL xi, i = 1, . . . , t 1/t 1
t
∑t

i=1 xi
Mean reversion CRP/UP/AA n/a n/a n/a

Anticor n/a n/a n/a
PAMR/CWMR 1

xt
100% 1

xt
OLMAR Eq. (8) 100% Eq. (8)
RMR Eq. (9) 100% Eq. (9)

Mixed BH/BK/BNN/BGV/CORN xi, i ∈ Ct 1/ |Ct| 1
|Ct |

∑
i∈Ct

xi

The third category, including FTL and FTRL, implicitly predicts the next scenario
as all historical price relatives. In particular, it predicts that the next price relative
vector equals xi, i = 1, . . . , t with a uniform probability of 1

t . Based on such prediction,
strategies in this category aim to maximize the expected log return and subtract a
regularization term for FTRL. Note that different from the regularization terms in
the first category, the regularization term in this category, such as R(b) = ‖b‖2, only
controls the deviation of next portfolio. This is due to the fact that the predictions
already contain all available information.

Note that the two connections are not exclusive. For example, some universal portfolio
selection algorithms (EG, ONS, etc.) show both connections. On the one hand, their
formulations can be explicitly rewritten to Kelly’s form. On the other hand, their
motivations follow the first connection, which is validated by their theoretical results.

4.3. Underlying Trading Principles

Besides the aspect of the CGT, most existing algorithms also follow certain trading ideas
to implicitly or explicitly predict their next price relatives. Table V summarizes their
underlying trading ideas via three trading principles: momentum, mean reversion, and
others (e.g., nonparametric prediction).

Momentum strategy [Chan et al. 1996; Rouwenhorst 1998; Moskowitz and Grinblatt
1999; Lee and Swaminathan 2000; George and Hwang 2004; Cooper et al. 2004] as-
sumes winners (losers) will still be winners (losers) in the following period. By observing
algorithms’ underlying prediction schemes, we can classify EG/FTL/FTRL as this cat-
egory. Although EG assumes that next price relative vector will be the same as last
one, FTL and FTRL assume that next price relative is expected to be the average of all
historical price relative vectors.

In contrast, a mean reversion strategy [Bondt and Thaler 1985, 1987; Poterba and
Summers 1988; Jegadeesh 1991; Chaudhuri and Wu 2003] assumes that winners
(losers) will be losers (winners) in the following period. Clearly, CRP and UP, Anticor,
and PAMR/CWMR belong to this category. Here, note that UP is an expert combination
of the CRP strategies, and we classify it by its implicit assumption on the underlying
stocks. If we observe from the perspective of experts, UP transfers wealth from CRP
losers to CRP winners, which is actually momentum. Moreover, PAMR and CWMR’s
expected price relative vector is implicitly the inverse of last vector, which is in the
opposite of EG.

Other trading ideas, including the Pattern-Matching–based approaches, cannot be
classified as the two categories mentioned previously. For example, for the Pattern-
Matching approaches, their average of the price relatives in a similarity set may be
regarded as either momentum or mean reversion. Besides, the classification of AA
depends on the type of underlying experts. From an experts’ perspective, AA always
transfers the wealth from loser experts to winner experts, which is momentum strategy.
From stocks’ perspective, which is the assumption in Table V, the classification of
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AA coincides with that of its underlying experts. That is, if the underlying experts
are single-stock strategy, which is momentum, then we view AA’s trading idea as
momentum. On the other hand, if the underlying experts are CRP strategy, which
follows the mean reversion principle, we regard AA’s trading idea as mean reversion.

5. CHALLENGES AND FUTURE DIRECTIONS

The online portfolio selection task is a special and important case of asset management.
Although existing algorithms perform well theoretically or empirically in back tests,
researchers have encountered several challenges in designing the algorithms. In this
section, we focus on the two consecutive steps in the online portfolio selection: prediction
and portfolio optimization. In particular, we illustrate open challenges in the prediction
step in Section 5.1 and list several other challenges in the portfolio optimization step
in Section 5.2. There are a lot of opportunities in this area, and it warrants further
exploration.

5.1. Accurate Prediction by Advanced Techniques

As we analyzed in Section 4.2, existing algorithms implicitly assume various prediction
schemes. Although current assumptions can result in good performance, they are far
from perfect. Thus, the challenges for the prediction step are often related to the design
of more subtle prediction schemes in order to produce more accurate predictions of the
price relative distribution.

—Searching patterns. In the Pattern-Matching–based approaches, despite the many
sample selection techniques introduced, efficiently recognizing patterns in the fi-
nancial markets is often challenging. Moreover, existing algorithms always assume
uniform probability on the similar samples, whereas it is a challenge to assign ap-
propriate probability, hoping to predict more accurately. Finally, existing algorithms
only consider the similarity between two market windows with the same length and
same interval; however, locating patterns with varying timing [Rabiner and Levinson
1981; Sakoe and Chiba 1990; Keogh 2002] is also potentially attractive.

—Utilizing stylized facts of returns. In econometrics, there exist a lot of stylized facts,
which refer to consistent empirical findings that are accepted as truth. One stylized
fact is related to autocorrelations in various assets’ returns.2 It is often observed
that some stocks/indices show positive daily/weekly/monthly autocorrelations [Fama
1970; Lo and MacKinlay 1999; Llorente et al. 2002], whereas some others have
negative daily autocorrelations [Lo and MacKinlay 1988, 1990; Jegadeesh 1990]. An
open challenge is to predict future price relatives utilizing their autocorrelations.

—Utilizing stylized facts in absolute/square returns. Another stylized fact [Taylor 2005]
is that the autocorrelations in absolute and squared returns are much higher than
those exhibited by simple returns. This fact indicates that there may be a consistent
nonlinear relationship within the time series, which may be exploited by various
machine learning techniques to boost the prediction accuracy. However, in the current
prediction step, such information is rarely exploited, thus constituting a challenge.

—Utilizing calendar effects. It is well known that there exist some calendar effects, such
as January effect or turn-of-the-year effect [Rozeff and Kinney Jr. 1976; Haugen and
Lakonishok 1987; Moller and Zilca 2008] and holiday effect [Fields 1934; Brockman
and Michayluk 1998; Dzhabarov and Ziemba 2010]. No existing algorithm exploits
such information, which can potentially provide better predictions. Thus, another
open challenge is to take advantage of these calendar effects in the prediction step.

2The econometrics community often uses the net return, which equals price relative minus one.
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—Exploiting additional information. Although most existing prediction schemes focus
solely on the price relative (or price), there exists other useful side information,
such as volume, fundamental, and experts’ opinions. Cover and Ordentlich [1996]
presented a preliminary model to incorporate the information, which is, however,
far from applicability. Thus, it is an open challenge to incorporate other sources of
information in order to facilitate the prediction of next price relatives.

5.2. Open Issues of Portfolio Optimization

Portfolio optimization is the subsequent step for online portfolio selection. Although the
CGT is effective in maximizing final cumulative wealth, which is the aim of our task, it
often incurs high risk [Thorp 1997], which is sometimes unacceptable for an investor.
Incorporating the risk concern within online portfolio selection is another open issue,
which is currently not taken into account.

—Incorporating risk. Mean-variance theory [Markowitz 1952] adopts variance as a
proxy to risk. However, simply adding variance may not efficiently trade off between
return and risk. Thus, one challenge is to exploit an effective proxy to risk and
efficiently trade off between them in the scenario of online portfolio selection.

—Utilizing “optimal f ”. One recent advancement in money management is “optimal f ”
[Vince 1990, 1992, 1995, 2007, 2009], which is proposed to handle the drawbacks of
Kelly’s theory. Optimal f can reduce the risk of Kelly’s approach; however, it requires
an additional estimation of drawdown [Magdon-Ismail and Atiya 2004], which is
also difficult. Thus, this poses one challenge to explore the power of optimal f and
efficiently incorporate it to the area of online portfolio selection.

—Loosening portfolio constraints. Current portfolios are generally constrained in a sim-
plex domain, which means that the portfolio is self-financed without margin/shorting.
Besides current long-only portfolios, there also exist long/short portfolios [Jacobs and
Levy 1993], which allow short selling and margin. Cover [1991] proposed a proxy to
evaluate an algorithm when margin is allowed, by adding additional margin com-
ponents for all assets. Moreover, the empirical results on NYSE data [Györfi et al.
2012, Chapter 4] show that there is no gain for online portfolio selection with short
selling; however, with leverage, there is a spectacular increase in the growth rate.
Yet, current methods are still in their infancy and far from application. Thus, the
challenge is to develop effective algorithms when margin and shorting are allowed.

—Extending transaction costs. To make an algorithm practical, one has to consider
some practical issues, such as transaction costs. Although several online portfolio
selection models with transaction costs [Blum and Kalai 1999; Iyengar 2005; Györfi
and Vajda 2008] have been proposed, they cannot be explicitly conveyed in an algo-
rithmic perspective, which is hard to understand. One challenge is to extend current
algorithms to the cases when transaction costs are taken into account.

—Extending market liquidity. Although all published algorithms claim that in the back
tests they choose blue chip stocks, which have the highest liquidity, it cannot solve
the concern of market liquidity. Completely solving this problem may involve paper
trading or real trading, which is difficult for the community. Besides, no algorithm
has ever considered this issue in its algorithm formulation. The challenge here is to
accurately model the market liquidity and then design efficient algorithms.

6. CONCLUSIONS

This article conducted a survey on the online portfolio selection problem, an inter-
disciplinary topic of machine learning and finance. With the focus on algorithmic as-
pects, we began by formulating the task as a sequential decision learning problem and
then further grouped the existing algorithms into five major categories: Benchmarks,
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Follow the Winner, Follow the Loser, Pattern-Matching–based approaches, and MLAs.
After presenting the surveys of individual algorithms, we further connected them to
the CGT so as to better understand the essentials of their underlying trading ideas.
Finally, we outlined some open challenges for future research investigations. We note
that although quite a few algorithms have been proposed in the literature, many open
research problems remain unsolved and deserve further exploration. It is our hope that
this survey article facilitates researchers to understand the state of the art in this area
and potentially inspires more fruitful future studies.
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