Discriminative Scoring for Speaker Recognition Based on I-vectors

Jun Wang

7/07/2014

outline

- **♦** Introduction
- **♦** Background theory
- ◆ Motivation of NN approach
- ◆ NN-based discriminative model
- **♦** Experiments
- **♦** Conclusions

◆Introduction

Background

- ▶i-vector: the most popular approach to speaker verification. [N. Dehak, 2011]
- ➤PLDA: Probabilistic linear discriminant analysis, achieve state-of-the-art performance.[S. Ioffe, 2006][C. S. Greenberg, 2013]

Motivation

- ➤ limitations of PLDA:
 - ✓ assumptions on data distributions.
 - ✓ not directly optimized with respect to speaker verification task.
- the difference between discriminative model and generative model.

Our approach

NN-based (neural-network-based) discriminative scoring approach.

- **♦**Theory background
- i-vector[N. Dehak, 2011]

Given a test utterance u_t and an enrollment utterance u_e .

- \triangleright Speaker verification task is to verify whether u_t and u_e are spoken from the same speaker or different speakers.
- > i-vector training and testing.

• PLDA [S. J. D. Prince, 2007]

- Probabilistic linear discriminant analysis (PLDA) has been applied successfully to specify a generative model of the i-vector representation, achieves the state-of-the-art performance.
- Technically, assuming a factor analysis (FA) model of the i-vectors of the form:

$$\omega = \mu + Fh + Gy + \varepsilon$$

Speaker dependent part Session dependent part

 $\triangleright \omega$ is the i-vector, μ is the mean of training i-vectors, and $h \sim \mathcal{N}(0, I)$ is a vector of latent factors. The full covariance residual noise term ε explains the variability not captured through the latent variables.

• Comparison between generative model and discriminative model

	generative model	discriminative model				
1	modeling observations drawn from a probability density function	do not need to model the distribution of the observed variables				
2	can simulate values of any variable in the model	allows only sampling of the target variables conditional on the observed quantities				
3	can generally express more complex relationships between the observed and target variables.	provides a model only for the target variable conditional on the observed variables				
4	PLDA	NN				

➤ The generative model and discriminative model are seen as complementary.

◆ Motivation of NN-based discriminative model

• limitations of PLDA

A disadvantage of PLDA lies in its Gaussian assumption of the prior or conditional distributions on the speaker and session variables, which is not necessarily true in reality.

$$\omega = \mu + Fh + \varepsilon$$

$$h \sim \mathcal{N}(0, I)$$

$$\overline{\omega} = \mu + \varepsilon$$

$$\text{prior:} \overline{\omega} \sim \mathcal{N}(\mu, \varepsilon^T \varepsilon)$$

- > not directly optimized with respect to speaker verification task.
- ➤ We present a NN-based discriminative approach, which does not rely on any artificial assumptions on data distributions.
- The posterior probability that an i-vector pair belongs to the same person are read off from the NN output directly as the trial score.

• the amplitudes of i-vector also contain speaker information

◆NN-based discriminative model

- We presents a discriminative approach which models i-vector pairs using a neural-network (NN).
- Suppose ω_t and ω_e are two total variability factor vectors extracted from test utterance and enrollment utterance respectively.
- >Suppose A is projection matrix obtained by LDA (linear discriminant analysis)
- The cosine kernel [A. Hatch, 2006] between ω_t and ω_e can be written as:

$$k(\omega_t, \omega_e) = \frac{(A'\omega_t)'(A'\omega_e)}{\sqrt{(A'\omega_t)'(A'\omega_t)}\sqrt{(A'\omega_e)'(A'\omega_e)}}$$

 $v_t = A'\omega_t$, v_t^i corresponding to the i-th dimension of v_t $v_e = A'\omega_e$, v_e^i corresponding to the i-th dimension of v_e $d_i = \left(v_t^i - v_e^i\right)^2$

NN structure

- \$layerdims="--layerdims N+1:200:200:2".
- \$epochs="--epochs 5:5:10".
- training data: 32500 pairs of utterances, 16250 for same speaker pairs.

- Accuracy on training set
 - Different epochs.
 - Using all frames for epoch frames, about 32500 frames for each epoch training.

NN testing

• The posterior probability that an i-vector pair belongs to the same person are read off from the NN output directly as the trial score.

◆Two combination methods of MLP and PLDA

 \succ c_method 1: $Score = \alpha Score_{nn} + (1 - \alpha)Score_{plda}$

>c_method 2: Use PLDA score as one of the input nodes of NN

- **◆**Experiment
 - Database
 - ➤ Development database
 - ✓ Fisher English part 1 and 2 as development dataset
 - ✓ contains 7196 females (12837 utterances).

- > We also define a cross-validation dataset
 - ✓ select 100 speakers from SRE08 to build a cross-validation dataset
 - ✓ contains about 3000 trials with all 8 common evaluation conditions.

➤ Test database

- ✓NIST 2008 speaker recognition evaluation (SRE 2008) [NIST, 2008]:
- ✓ core test of SRE 2008 is named short2-short3
- ✓ contains 1997 females and 59343 trials.(including the cross-validation dataset)
- ✓at least 2 minutes of speech for a given speaker
- ✓8 common evaluation conditions and define an all trials condition

	all trials				
	num of trials	proportion%			
c1	18898	34.83			
c2	957	1.76			
c3	17941	33.06			
c4	6378	11.75			
c5	4354	8.02			
c6	22152	40.82			
c7	10607	19.55			
c8	4959	9.14			
c9	54262	100			
c10	3000				

Table 1: proportion of different conditions.

• Experiments setup

- ➤ Configurations of i-vector
 - ✓ NIST 2008 speaker recognition evaluation (SRE 2008)
 - ✓ sampling rate of the audio signals is 8 kHz and the sample size is 16 bits
 - ✓20-dimensional mel-frequency cepstral coefficients, delta and delta-delta
 - ✓2048 Gaussian Mixtures
 - ✓ 400 total factors
 - ✓ 150-dimensional LDA, 400-dimensional PLDA

➤ MLP setup

- ✓2 hidden layers with 200 nodes
- ✓ Output layer: 2 nodes, 1 0 for the same speakers, 0 1 for the imposters
- ✓ training data: 32500 pairs of speakers
- ✓ epoch frames: using all training data in each epoch
- ✓input layer: number of nodes dependents on the number of LDA dimensions we choose

- Experiment results
 - > NN test on the cross-validation dataset
 - ✓ N=10 will get the best result

> NN test under different conditions

Figure 2: EER comparison under different conditions

Figure 3: DCF comparison under different conditions

> NN test on all trials

	all trials				
	LDA/MLP	PLDA/MLP	LDA/PLDA		
20 classes	3.07e-13	3.11e-08	9.00e-10		
30 classes	6.18e-14	1.94e-08	2.17e-07		

Table 2: significant value of different methods.

	all trials		
	EER%	DCF	
LDA	18.46	0.0797	
PLDA	17.22	0.0703	
MLP	15.56	0.0702	

Table 3: Experiment results on all trials.

➤ NN test with different input dimensions (from N=1 to N=20)

> Experiment results

EER%	c1	c2	c3	c4	с5	c6	с7	c8	с9
LDA	24.07	1.49	24.18	14.56	14.54	10.25	6.46	6.58	1.46
PLDA	19.50	2.18	19.71	14.54	11.22	8.06	4.27	4.46	17.22
NN	18.23	0.93	18.82	15.65	14.63	8.70	5.07	4.46	15.56
c_method1	17.57	0.93	17.82	13.26	12.07	7.77	4.40	4.18	15.47
c_method2	17.69	0.93	18.09	12.94	12.20	7.89	4.27	4.18	15.74

References

- [1] N. Dehak, P. Kenny, R. Dehak, et al. Front-end factor analysis for speaker verification[J]. Audio, Speech, and Language Processing, IEEE Transactions on, 2011, 19(4): 788-798.
- [2] P. Kenny, G. Boulianne, and P. Dumouchel, "Eigenvoice modeling with sparse training data," IEEE Transactions on Speech and Audio Processing, vol. 13, no. 3, pp. 345–354, 2005.
- [3] A. Hatch and A. Stolcke, "Generalized linear kernels for one-versus-all classification: application to speaker recognition," in to appear in proc. of ICASSP, Toulouse, France, 2006.
- [4] A. Hatch, S. Kajarekar, and A. Stolcke, "Within-class covariance normalization for SVM-based speaker recognition," in Proc. Int. Conf. Spoken Lang. Process., Pittsburgh, PA, Sep. 2006.
- [5] S. J. Prince and J. H. Elder, "Probabilistic linear discriminant analysis for inferences about identity," in International Conference on Computer Vision. IEEE, 2007, pp. 1–8.
- [6] The NIST Year 2008 Speaker Recognition Evaluation Plan, http://www.nist.gov/speech/tests/spk/2008/sre-08 evalplan-v9.pdf.
- [7] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, "Joint factor analysis versus eigenchannels in speaker recognition," IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 4, pp. 1435–1447, 2007.
- [8] A. O. Hatch, S. S. Kajarekar, and A. Stolcke, "Within-class covariance normalization for SVM-based speaker recognition." in INTERSPEECH'06, 2006.
- [9] A. Solomonoff, C. Quillen, and W. M. Campbell, "Channel compensation for SVM speaker recognition," in Proc Odyssey, Speaker Language Recognition Workshop 2004, 2004, pp. 57–62.
- [10] S. Ioffe, "Probabilistic linear discriminant analysis," in ECCV 2006, 2006, pp. 531–542.
- [11] M. McLaren and D. V. Leeuwen, "Source-normalised-and-weighted LDA for robust speaker recognition using i-vectors," IEEE Transactions on Audio, Speech, and Language Processing, pp. 5456–5459, 2011.
- [12] N. Dehak, R. Dehak, P. Kenny, P. Ouellet, and P. Dumouchel, "Support vector machines versus fast scoring in the low-dimensional total variability space for speaker verification," in International Conference on Spoken Language Processing ICSLP. IEEE, 2009, pp. 1559–1562.
- [13] C. S. Greenberg, V. M. Stanford, A. F. Martin, M. Yadagiri, G. R. Doddington, J. J. Godfrey, and J. Hernandez-Cordero, "The 2012 NIST speaker recognition evaluation." 2013.

THANKS