
Phonexia s.r.o. submission to OLR 2020

Michal Klčo, Ondřej Novotný, Ján Profant, Josef Slavı́ček

Phonexia s.r.o.
{michal.klco, ondrej.novotny, ...}@phonexia.com

Abstract
This is the description of the systems submitted to all threes task
of the AP20-OLR Challenge.

The points where our systems differ from the baseline are
described in detail: added spectral augmentation, training pro-
cess of TDNN, and ResNet architecture and different data pre-
processing techniques for each architecture.

1. Introduction
AP20-OLR Challenge is the fifth oriental language recognition
(OLR) challenge with three tasks: (1) cross-channel language
identification, (2) dialect identification, and (3) language iden-
tification in a noisy environment.

The following sections describe submitted systems for all
the tasks.

2. System
2.1. Data processing

2.1.1. Data description

The AP16-OL7, AP17-OL3, and AP17-OLR-test datasets [1]
in combination with the THCHS30 [2] dataset were used as the
training data for all our systems. Together, the training set con-
tains 165427 utterances of 10 training languages.

2.1.2. Augmentation

The speed and volume perturbations were used to augment the
training data in the same way as in the baseline system [1]. Ad-
ditionally, we used spectral augmentation to add random distor-
tion to the signal.

In spectral augmentation, we used two ways to distort the
signal. First, the signal was transformed into the spectrogram,
followed with simultaneous usage of both masking approach:
(i) time masking, where several randomly selected frames were
replaced by spectrogram mean value; (ii) frequency masking,
where several randomly selected frequency bins were replaced
by spectral mean value across all frames. After the spectral
masking procedure, the spectrogram was transformed back to
signal, followed by feature extraction.

2.1.3. Features

As features, we used 64-dimensional filter banks for all the
tasks. The filter banks were computed in Kaldi with 25 ms win-
dow length and 10 ms shift.

2.2. Architecture

2.2.1. TDNN – task 1, 3

TDNN [3] is a neural net architecture popularly used in speech
processing for tasks like SID or LID. For OLR2020 tasks 1 and

Table 1: TDNN architecture.

Layer Layer context Input × output

frame1 [t− 2, t+ 2] 320 × 512
frame2 {t− 2, t, t+ 2} 1536 × 512
frame3 {t− 3, t, t+ 3} 1536 × 512
frame4 {t} 512 × 512
frame5 {t} 512 × 1500

stats pooling [0, T ) 1500 × 3000
segment6 0 3000 × 512
segment7 0 512 × 512
softmax 0 512 × 10

3, we used the original TDNN architecture adapted to the input
features dimensionality difference. The detailed network archi-
tecture is presented in Table 1

2.2.2. ResNet18 – task 2

ResNet [4] is a successful DNN architecture developed for im-
age processing and used in a wide variety of tasks, including
speech processing. For OLR2020 task 2, we used ResNet18
with a statistics pooling layer from [3]. The output of the first
linear layer after statistics pooling is used as language embed-
ding. Out Resnet18 architecture is depicted in Table 2

Table 2: The structure of ResNet18 architecture. The first di-
mension of the input shows the number of filter-banks and the
second dimension indicates the number of frames.

Layer Structure Stride Output
Input - - 64× 100× 1
Conv2D-1 3× 3, 32 1 64× 100× 32

ResNetBlock-1
[
3×3,32
3×3,32

]
× 2 1 64× 100× 32

ResNetBlock-2
[
3×3,64
3×3,64

]
× 2 2 32× 50× 64

ResNetBlock-3
[
3×3,128
3×3,128

]
× 2 2 16× 25× 128

ResNetBlock-4
[
3×3,256
3×3,256

]
× 2 2 8× 13× 256

Statistics Pooling - - 16× 256
Flatten - - 4096
Linear1 - - 256

Linear2 - - 10

3. Experiments
3.1. Training

We trained our ResNet18 in PyTorch framework on 6 NVIDIA
RTX 2080ti GPUs with SGD optimizer with Nesterov momen-
tum 0.9 and weight decay 0.0001. The model was trained for 3
epochs with batch size 32 per GPU (i.e. 192 in total). The learn-



Table 3: Cavg and EER results on the referenced development
sets.

Task Cross-channel LID Dialect Identification
Enrollment Set AP20-ref-dev-task1 AP20-OLR-dialect

Test Set AP19-OLR-channel AP19-OLR-dev&eval-task3-test
Cavg EER% Cavg EER%

Baseline
Kaldi

i-vector 0.2965 29.12 0.0703 9.33
Baseline

Kaldi
x-vector 0.3583 36.37 0.0807 14.67
Baseline
Pytorch
x-vector 0.2696 26.94 0.0849 12.40
TDNN 0.2889 29.09 – –

ResNet18 – – 0.0256 4.60

ing rate was exponentially decaying from 0.06 to 0.0003. The
system was trained as a classifier with softmax head and cross-
entropy loss. For the final submission, we used a snapshot of
the neural net after 1.39 epoch of training.

Our TDNN system was trained on data processed with
Kaldi energy based VAD. Input features were mean-variance
normalized over a sliding window of length 100 frames. Our
ResNet18 was trained on raw features (i.e. no VAD, no mean-
variance normalization).

3.2. Scoring

The same back-end was used as in [1]. Linear Disciminant
Analysis (LDA) is used to reduce the dimension of the embed-
dings from 256 to 100, the embeddings are then centered and
the score is calculated for each trial using logistic regression
(LR). LDA, centering mean and LR were trained on the enroll-
ment set.

4. Results
Table 3 shows the results of our systems on the referenced de-
velopment sets in comparison with the baseline systems.

5. Conclusion
In this paper, we presented the systems that we submitted to the
AP20-OLR challenge. We described the data processing, used
architectures, training process, and scoring process.

6. References
[1] Z. Li, M. Zhao, Q. Hong, L. Li, Z. Tang, D. Wang, L. Song, and

C. Yang, “Ap20-olr challenge: Three tasks and their baselines,”
arXiv preprint arXiv:2006.03473, 2020.

[2] D. Wang and X. Zhang, “Thchs-30: A free chinese speech corpus,”
arXiv preprint arXiv:1512.01882, 2015.

[3] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-vectors: Robust dnn embeddings for speaker recognition,”
Submitted to ICASSP, 2018.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778.


