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Exercise 1.20

extend this approach to deal with input spaces having several variables. If we have
D input variables, then a general polynomial with coefficients up to order 3 would
take the form

D D D
y(x,w) fwo—l—Zwaz—l—ZZwUx xj + ZZZw”kmw]xk (1.74)

i=1 j=1 1 j=1 k=1

As D increases, so the number of independent coefficients (not all of the coefficients
are independent due to interchange symmetries amongst the = variables) grows pro-
portionally to D3. In practice, to capture complex dependencies in the data, we may
need to use a higher-order polynomial. For a polynomial of order M, the growth in
the number of coefficients is like DY . Although this is now a power law growth,
rather than an exponential growth, it still points to the method becoming rapidly
unwieldy and of limited practical utility.

Our geometrical intuitions, formed through a life spent in a space of three di-
mensions, can fail badly when we consider spaces of higher dimensionality. As a
simple example, consider a sphere of radius » = 1 in a space of D dimensions, and
ask what is the fraction of the volume of the sphere that lies between radius r = 1 —e¢
and » = 1. We can evaluate this fraction by noting that the volume of a sphere of
radius r in D dimensions must scale as ", and so we write

Vp(r) = Kpr” (1.75)
where the constant K p depends only on D. Thus the required fraction is given by

Vp(1) — Vp(1 —¢)
Vb (1)

which is plotted as a function of € for various values of D in Figure 1.22. We see
that, for large D, this fraction tends to 1 even for small values of €. Thus, in spaces
of high dimensionality, most of the volume of a sphere is concentrated in a thin shell
near the surface!

As a further example, of direct relevance to pattern recognition, consider the
behaviour of a Gaussian distribution in a high-dimensional space. If we transform
from Cartesian to polar coordinates, and then integrate out the directional variables,
we obtain an expression for the density p(r) as a function of radius r from the origin.
Thus p(r)dr is the probability mass inside a thin shell of thickness dr located at
radius r. This distribution is plotted, for various values of D, in Figure 1.23, and we
see that for large D the probability mass of the Gaussian is concentrated in a thin
shell.

The severe difficulty that can arise in spaces of many dimensions is sometimes
called the curse of dimensionality (Bellman, 1961). In this book, we shall make ex-
tensive use of illustrative examples involving input spaces of one or two dimensions,
because this makes it particularly easy to illustrate the techniques graphically. The
reader should be warned, however, that not all intuitions developed in spaces of low
dimensionality will generalize to spaces of many dimensions.

=1-(1-¢P (1.76)
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Although the curse of dimensionality certainly raises important issues for pat-
tern recognition applications, it does not prevent us from finding effective techniques
applicable to high-dimensional spaces. The reasons for this are twofold. First, real
data will often be confined to a region of the space having lower effective dimension-
ality, and in particular the directions over which important variations in the target
variables occur may be so confined. Second, real data will typically exhibit some
smoothness properties (at least locally) so that for the most part small changes in the
input variables will produce small changes in the target variables, and so we can ex-
ploit local interpolation-like techniques to allow us to make predictions of the target
variables for new values of the input variables. Successful pattern recognition tech-
niques exploit one or both of these properties. Consider, for example, an application
in manufacturing in which images are captured of identical planar objects on a con-
veyor belt, in which the goal is to determine their orientation. Each image is a point
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(<) I In this exercise, we explore the behaviour of the Gaussian distribution
in high-dimensional spaces. Consider a Gaussian distribution in D dimensions given

by
1 ]
_ _ , 1.14
p(X) (27-[-0-2)D/2 eXp < 20_2 ( 7)

We wish to find the density with respect to radius in polar coordinates in which the
direction variables have been integrated out. To do this, show that the integral of
the probability density over a thin shell of radius r and thickness ¢, where ¢ < 1, is
given by p(r)e where

SprP—1 r?

where Sp is the surface area of a unit sphere in D dimensions. Show that the function
p(r) has a single stationary point located, for large D, at 7 ~ \/Do. By considering
p(7 + €) where e < 7, show that for large D,

~ . 3e?
p(T+€) = p(¥) exp (W) (1.149)

which shows that 7 is a maximum of the radial probability density and also that p(r)
decays exponentially away from its maximum at 7 with length scale o. We have
already seen that o < 7 for large D, and so we see that most of the probability
mass is concentrated in a thin shell at large radius. Finally, show that the probability
density p(x) is larger at the origin than at the radius 7 by a factor of exp(D/2).
We therefore see that most of the probability mass in a high-dimensional Gaussian
distribution is located at a different radius from the region of high probability density.
This property of distributions in spaces of high dimensionality will have important
consequences when we consider Bayesian inference of model parameters in later
chapters.

(xx) Consider two nonnegative numbers a and b, and show that, if a < b, then
a < (ab)l/ 2. Use this result to show that, if the decision regions of a two-class
classification problem are chosen to minimize the probability of misclassification,
this probability will satisfy

p(mistake) < /{p(x,Cl)p(x,Cg)}l/2 dx. (1.150)

()l Given a loss matrix with elements Ly, the expected risk is minimized
if, for each x, we choose the class that minimizes (1.81). Verify that, when the
loss matrix is given by Ly; = 1 — Ii;, where Ij; are the elements of the identity
matrix, this reduces to the criterion of choosing the class having the largest posterior
probability. What is the interpretation of this form of loss matrix?

(x) Derive the criterion for minimizing the expected loss when there is a general
loss matrix and general prior probabilities for the classes.



reasoning, the density of p at distance r is proportional to r~! in d dimensions. Solving

::01 crd=tdr = 1 (the integral of density must equal 1) we should set ¢ = d. Another way
to see this formally is that the volume of the radius r ball in d dimensions is 7%V}, where
Vy is the volume of the unit ball. The density at radius r is exactly d%(rdVd) = drt1V,.

So, pick p(r) with density equal to dr?=! for r over [0, 1].

We have succeeded in generating a point

X
Y =P

]
uniformly at random from the unit ball S by using the convenient spherical Gaussian
distribution. In the next sections, we will analyze the spherical Gaussian in more detail.

2.6 Gaussians in High Dimension

A 1-dimensional Gaussian has its mass close to the origin. However, as the dimension
is increased something different happens. The d-dimensional spherical Gaussian with zero
mean and variance o2 in each coordinate has density function

()= — (~5E)
pX)=——5—exp|—5z) -
(27_‘_)d/20_d 202

The value of the density is maximum at the origin, but there is very little volume there.
When o = 1, integrating the probability density over a unit ball centered at the origin
yields nearly zero mass since the volume of such a ball is negligible. In fact, one needs to
increase the radius of the ball to nearly v/d before there is a significant nonzero volume
and hence significant probability mass. If one increases the radius much beyond v/d, the
integral barely increases even though the volume increases since the probability density
is dropping off at a much higher rate. The following theorem states this formally that
nearly all the probability is concentrated in a thin annulus of width O(1) at radius v/d.

Theorem 2.8 (Gaussian Annulus Theorem) For a d-dimensional spherical Gaussian
with unit variance in each direction, for any 8 < V/d, all but at most 3¢~ of the prob-
ability mass lies within the annulus Vd — B < x| < Vd + B, where ¢ is a fized positive
constant.

For a high-level intuition, note that E(|x|?) = ijl E(x?) = dE(z?) = d, so the mean
squared distance of a point from the center is d. The Gaussian Annulus Theorem says
that the points are tightly concentrated. We call the square root of the mean squared
distance, namely v/d, the radius of the Gaussian.

To prove the Gaussian Annulus Theorem we make use of a tail inequality for sums of
independent random variables of bounded moments.
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The volume of the cube i2a)”. Combining this with (1.143) and (1.144) we obtain
(1.145). Using Stirling’s formula (1.146) in (1.145) the ratio beesnfor largeD,

volume of sphere ( e )D/2 1

volume of cube ~ \2D D (44)

which goes td) asD — oo. The distance from the center of the cube to the mid
point of one of the sides ig, since this is where it makes contact with the sphere.
Similarly the distance to one of the cornersigD from Pythagoras’ theorem. Thus
the ratio isv/D.

Sincep(x) is radially symmetric it will be roughly constant over the sh#lkadius
r and thickness. This shell has volumé P ~e and sincd|x||? = r? we have

/ p(x) dx ~ p(T’)SDTD_16 (45)
shell

from which we obtain (1.148). We can find the stationary points(ef by differen-
tiation

d D—2 D—1 r r’
—p(r) « [(D - 1)r +r (——)} exp | —5 5 | = 0. (46)

dr o2

Solving forr, and usingD >> 1, we obtain’ ~ v/Do.
Next we note that

pT+e) o (T+e)P lexp [—(?2—;?1

= exp [— <?2_;§)2 +(D—=1)In(r+ 6):| . 47)

We now expandy(r) around the poinf. Since this is a stationary point @fr)
we must keep terms up to second order. Making use of the expelngib+ =) =
x — 2?/2 + O(x3), together withD >> 1, we obtain (1.149).

Finally, from (1.147) we see that the probability density at thigin is given by

Plx=0) =G i
while the density afix|| = 7 is given from (1.147) by

T

PR =1) = (2mo2)1/2 P\ To02 ) T (2mo2)1/2 P 2

where we have usetl~ v/Do. Thus the ratio of densities is given byp(D/2).



Since the variance o is the same for all classes, the SI decision can be equally based on the Euclidean
distance, e.g.,

se = |1z — el |?,

where we use s, to denote the score based on the Euclidean distance.

Cosine approximation

We will show that in a high-dimensional space, the Euclidean distance is well approximated by the
cosine distance, under the linear Gaussian assumption.

First notice that the Gaussian annulus theorem [4]] states that for a d-dimensional Gaussian distribution
with the same variance € in each direction, nearly all the probability mass is concentrated in a thin

annulus of width O(1) at radius v/ed, as shown in Figure This slightly anti-intuitive result indicates
that in a high-dimensional space, most of the samples from a Gaussian tend to be in the same length.
Rigid proof for this theorem can be found in [4].

Vd

Figure 1: Gaussian annulus theorem [4]]: for a d-dimensional multi-variant Gaussian with unit variance
2
in all directions, for any 8 < V/d, all but at most 3¢~?" of the probability mass lies within the annulus

Vd — 8 < ||x|]| < V/d+ B, where cis a fixed positive constant. The color region shown in the figure represents
the annulus.

Now we rewrite the Euclidean score as follows:

se = [[@]1* + llmrl|* — 2 cos(a, ) || []pel],
since ||p || = Ved, cos(, uy) will be the only term that discriminates the probability that  belongs
to different class k. This leads to the cosine score:
Se = cos(x, pi)-

This result provides the rationality of the cosine score. It should be noted that this approximation is
only valid for high-dimensional data, and the class means must be from a Gaussian with a zero mean.
Therefore, data centralization is important for cosine scoring.

2.2 Normalized likelihood (NL) for SV

For SV tasks, our goal is to test two outcomes and check which one is more probable: { Hy: z
belongs to class k; Hi: & belongs to any class other than k }. Again following the MAP principle, the
optimal decision can be derived from the posterior p(Hy|z). Assuming an equal prior, this leads to:

p(z|Ho)
x|Ho) + p(x|H,)'
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