ViVi_NMT: An Open Source Toolkit for
Neural Machine Translation

Abstract
This paper introduces ViVi_NMT in detail, a neural machine translation toolkit developed by Center for Speech and Language Technologies, Tsinghua University.On top of Tensorflow, ViVi_NMT implements the attention-based encoder-decoder framework. Experiments on Chinese-English datasets and English-German dataset show that ViVi_NMT has a good performance and achieves the exceptive goal.
1 Introduction
Neural Machine Translation (NMT) has been shown to have highly promising performance, particularly when a large amount of training data is available (Wu et al., 2016; Johnson et al., 2016; Shi et al., 2016; Mi et al., 2016). Although there are different model architectures (Sutskever et al.,2014; Bahdanau et al., 2015), the common principle behind the NMT approach is the same: encoding the meaning of the input into a concept space and performing translation based on this encoding. This ‘meaning encoding’ principle leads to a deeper understanding and learning of the translation rules, hence a better translation than conventional statistic machine translation (SMT) that considers only surface forms, i.e., words and phrases (Koehn et al., 2003).
[bookmark: _GoBack]This paper detailed introduces ViVi_NMT, an open source toolkit for neural machine translation developed by Center for Speech and Language Technologies, Tsinghua University. On top of Tensorflow, this toolkit mainly reproduced the RNNsearch model (Bahdanau et al., 2015).We compare ViVi_NMT with the statistical machine translation system Moses and THUMT(Zhang et al., 2002)，the experiments on Chinese-English datasets and English-German dataset show that ViVi_NMT has a good performance.
2 ViVi_NMT
On top of Tensorflow, ViVi_NMT implements the attention-based neural machine translation model( Bahdanau  et  al.,  2015）. Model details are clearly described in the paper( Bahdanau  et  al.,  2015） ,please refer to it.
2.1 Training Criteria
To save model training time,ViVi_NMT only uses maximum likelihood estimation as training criterion, which aims to find a set of model parameters that maximizes the likelihood of training data.
2.2 Optimization
Optimization is a key part in neural machine translation which directly affects the training time and translation performance of neural model. ViVi_NMT uses Adam optimization (Kingma and Ba, 2015) which computes individual learning rate for different parameters.
3 Experiments
3.1 Data
The experiments were conducted for Chinese-English translation and English-German translation using there datasets, the relatively small IWSLT dataset, the much larger NIST dataset and the standard WMT 2014 English-German dataset.
The IWSLT05 corpus The training data consists of 44K sentences from the tourism and travel domain.The development set was composed of the ASR devset 1 and devset 2 from IWSLT 2005, and testing used the IWSLT 2005 test set.
The NIST03 corpus The training data consists of 1M sentence pairs with 19M source tokens and 24M target tokens from the LDC corpora of LDC2002E18, LDC2003E07, LDC2003E14, and Hansard’s portion of LDC2004T07, LDC2004T08 and LDC2005T06. We use the NIST 2005 test set as the development set and the NIST 2003 test set as the test set.
The standard WMT 2014 English-German dataset The training data consists of about 4.5 million sentence pairs from the Common Crawl corpus,new News Commentary corpus and version 7 of the Europarl corpus. The development set and the test set are from the WMT 2014 development sets and the WMT 2014 cleaned test sets respectively.
3.2 Systems and Settings
We use the conventional SMT system Moses and an open source neural machine translation toolkit THUMT as the baselines. The translation performance was evaluated using the case-insensitive BLEU score (Papineni et al., 2002).
For a fair comparison, the configurations of the models in the ViVi_NMT system and the THUMT system were intentionally set to be identical.For all languages,we set the vocabulary size to 30K，configure the dimension of hidden layers and the word embedding dimension to 1000,620,respectively. In the training process, the batch size of the SGD algorithm was set to 80 and the step sizes of Adam optimizer was set to 0.0005.The decoding is implemented as a beam search,where the beam size was set to be 10.We train models on a single GPU device GeForce GTX 1070.
3.3 Experimental Results
	Toolkit
	Criterion
	Optimizer
	IWSLT05
	NIST03
	WMT 2014 English-German

	Moses
	
	
	53.99
	28.18
	15.3

	THUMT
	MLE
	Adam
	45.47
	OOM
	OOM

	ViVi_NMT
	MLE
	Adam
	47.93
	31.85
	14.55


Table 1: Comparison between Moses,THUMT and ViVi_NMT.
Table 1 shows the BLEU results with different systems. Firstly, it can be observed that with the small IWSLT05 dataset, the Moses performs much better than the other two NMT toolkit(this is unsurprising as neural models often need more training data),and ViVi_NMT got comparable(even slightly better) performance than THUMT. Secondly, when the much larger NIST dataset and WMT 2014 dataset were used in training process,OOM(out of memory error) occurred from THUMT toolkit due to insufficient memory of GPU. So we can only compare the other two toolkits.As we can see in the table, ViVi_NMT performs better than Moses with the much larger NIST dataset,and the translation performance of the two toolkits are approximately the same when WMT 2014 dataset were used.
4 Conclusion
In this paper,we have introduced ViVi_NMT,an open source toolkit for neural machine translation. Experiments on Chinese-English datasets and English-German dataset show that ViVi_NMT has a good performance and achieves the exceptive goal.The toolkit is freely available at https://github.com/CSLT-THU/CSLT_NMT.
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