N-GRAM FST INDEXING FOR SPOKEN TERM DETECTION

CHAO LIU SEP 24, 2012

1. Introduction to Spoken Term Detection

- 1. N-gram inverted indexing
- 2. FST indexing
- 3. N-gram FST indexing
- 4. Experiments
- 5. Conclusion

1. Introduction to Spoken Term Detection

- 1. N-gram inverted indexing
- 2. FST indexing
- 3. N-gram FST indexing
- 4. Experiments
- 5. Conclusion

SPEECH TERM DETECTION

- Spoken Term Detection (STD) : find all of the occurrences of a specified "term" in a given corpus of speech data.(NIST)
 - Term: a sequence of one or more words. For example: "car", "New York".
 - System output: **location** of the term in audio, a **score** indicating how likely the term exists.
 - Evaluation: both **speed** and detection **accuracy**.

SPEECH TERM DETECTION

We focus on an efficient indexing scheme, which is essentially important for STD on large databases.

1. Introduction to Spoken Term Detection

- 1. N-gram inverted indexing
- 2. FST indexing
- 3. N-gram FST indexing
- 4. Experiments
- 5. Conclusion

N-GRAM INVERTED INDEXING

- Get all n-gram fragments with their confidence scores existing in the input lattice, and sort them in chronological order.
- Speed up term searching using inverted list.

1. Introduction to Spoken Term Detection

- 1. N-gram inverted indexing
- 2. FST indexing
- 3. N-gram FST indexing
- 4. Experiments
- 5. Conclusion

FINITE STATE TRANSDUCER

Basic parts of FST

- Input label phone / n-gram
- Output label time period
- Weight confidence

FST operations

- Determinization
- Minimization
- Unification

bc->yz / 7.5

FST INDEXING

 Convert lattice to FST by linking initial and final states to all other states.

FST INDEXING

- Compile searching term to FST
- Do composition on term FST and utterance FST

1. Introduction to Spoken Term Detection

- 1. N-gram inverted indexing
- 2. FST indexing
- 3. N-gram FST indexing
- 4. Experiments
- 5. Conclusion

N-GRAM FST INDEXING

Compile N-gram fragments to FST

OPTIMIZATION

Standard operations

- Determinize, Minimize, RmEpsilon.
- Viewing it as an acceptor, encoded label (Allauzen and Mohri, 2004)
- Union

• Terms 0 < eps > :a 0 < eps > :a 1 < eps > :b 43

FUZZY SEARCH

- OOV words with uncertain pronunciation / mispronounced
 - N-best pronunciation prediction (Wang and King, 2011)
- Just union FSTs together

1. Introduction to Spoken Term Detection

- 1. N-gram inverted indexing
- 2. FST indexing
- 3. N-gram FST indexing
- 4. Experiments
- 5. Conclusion

BACKGROUND

- The ASR system was built with corpora used for train AMI RT05s ASR system
 - 80.2 hours of speech for acoustic model (AM) training
 - 521M words of text for language model (LM) training
 - Phone Error Rate (PER) is 40.49%
 - Average lattice density is 805 nodes / second
- STD Experiments were performed on RT04s and RT05s data sets
 - 489 INV terms and 67 OOV terms for development
 - 255 INV terms and 484 OOV terms for evaluation

EXPERIMENTS

- Metric for accuracy: Actual Term Weighted Value
 - $ATWV = 1 average \{P_{Miss}(term) + \beta \cdot P_{FA}(term)\}$ term

- Relevant factors
 - N
 - Confidence measures

COMPARISON

Searching efficiency

Index size

COMPARISON

RESULTS ON EVAL SET

INV terms	ATWV	Index size/MB	Time/s
Lattice	0.4782	483	>10^3
FST indexing	0.4782	959	16.6
N-gram inverted indexing	0.5310	226	6.0
N-gram FST indexing	0.5310	943	5.9
OOV terms	ATWV	Index size/MB	Time/s
Lattice	0.2191	483	>10^3
FST indexing	0.2191	959	19.0
N-gram inverted indexing	0.2813	226	9.7
N-gram FST indexing	0.2813	943	6.0
FST indexing / fuzzy	0.2305	959	81.1
N-gram inverted indexing / fuzzy	0.3156	226	401.9
N-gram FST indexing / fuzzy	0.3156	943	30.4

1. Introduction to Spoken Term Detection

- 1. N-gram inverted indexing
- 2. FST indexing
- 3. N-gram FST indexing
- 4. Experiments
- 5. Conclusion

CONCLUSION

- Compared with conventional FST indexing, N-gram FST indexing provides better STD performance by relaxing phone connectivity.
- Compared with the conventional N-gram inverted indexing, this approach is faster and possesses advantages of FSTs in terms of solid theory and rich tools.
- N-gram FST indexing shows significant improvement while doing fuzzy search.

THANK YOU !

Q&A