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Overview

* Attentive pooling and aggregation occupy the most.

* Dual, Vector-based, Hierarchical, Bidirectional, Positive-wise, Character-
level, mask-pooling, etc.

* Segment, Multi-scale aggregation

* A few scraps focus on training objective -
* Dynamic margin softmax, Angular margin centroid



Overview

* New directions
* Audio-visual speaker recognition
* SSL (APC)
* Speech enhancement / quality estimation
* Interactive training with reinforcement learning
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Impact of Acoustic Mismatch Upon Target Score on
VoxCeleb Data
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Problem

* Why does a given ASV system miss (reject) a target speaker?

* Analyses
* Predictions on average.
* Open-world setting
* Unlimited unknown variations.



|[dea

* To model the dependency of ASV detection score upon acoustic
mismatch of the enrollment and test utterances.



Methods

2.2. Mixed effects model

In LME models [10], predictors that are common to all observa-
tions are known as fixed effects. They are represented by means
of contrast. In our model, these are the acoustic distances for
each single target trial. Factors that are considered as a sample
of a population, in turn, are known as random effects. The ran-
dom effects in our model are the speakers. The model reflects
variations associated with the speakers, as a variable with zero
mean and unknown variance.
To be more specific, our model is defined as:

Yij = ;@t&%‘j + bi + €45, (2)

where y;; 1s the LLR score for the jth trial of target speaker
i, B'@i; is the fixed effect part (acoustic distances and their
weights), b; is the per-speaker random effect and <, is the resid-
ual. The assumption for a random speaker effect and the resid-
ual error is that they are independent of each other and follow a
normal distribution: b; ~ N'(0, 03%) and £;; ~ N (0. o2).

LetUd = (U.,U;) denote a pair of enrollment and test utterances.
An ASV system produces a log-likelihood ratio (LLLR) score
(dependent variable, 1) between the two utterances as,

(1)

where Hy and 11 represent the target (same-speaker) and non-
target (different-speaker) hypotheses, respectively, and O, en-
capsulates all the ASV parameters. In our case, (1) represents
LLR score from a probabilistic linear discriminant analysis
(PLDA) back-end classifier [3]. while the two utterances are
represented using their x-vector [2] speaker embeddings. The

While y serves as the response variable, our predictor vari-
ables, x, are formed by acoustic distances of the form x =
lo(f(Ue)) — p(f(U))]. Here f(-) is a short-term (frame-level)
feature extractor that converts a speech utterance into a se-
quence of scalar features, and ¢(-) is a fixed summary statis-
tics operator. By including different features and summary op-
erators, we come up with a vector of ) acoustical predictors,
& = (x1,...,xp) for any utterance pair (e, ). In this work,
¢ € {mean,std} consists of mean and standard deviation
while the features include various standard speech features (see



Acoustic Teatures

Table 1: The mixed effect model uses a total of 23 predictor
features, formed from the following combinations of features

and their long-term statistical summary measures.

Male speakers

Acoustic features, f

FO Fundamental frequency FO
Loudness
Jitter

VO Shimmer
log Harmonic-to-noise-Ratio  HNR
Spectral tilt H1 - H2

HI - A3

Formant Eormam frequencies, FltoF4
formant bandwidths, Bl to B4
formant amplitudes Al to A4

Spectral f.

Spectral flux

Temporal

Voiced segments per second
Voiced segments length
Unvoiced segments length

Fixed effects:
Estimate  Std. error  t-value r
Bo: Intercept 28.36 0.19 149.3
F1: FO —1.02 0.02 —47.81 | 0.54
F2: VO —0.36 0.006 —56.72 | 0.54
[F2: Formant 1 —0.20 0.01 —1541 | 0.532
[34: Formant 2 —0.15 0.01 —10.04 | 0.51
[3s: Formant 3 —0.16 0.01 —-11.11 | 0.51
Fg: Formant 4 —0.31 0.01 -=-30.60 | 0.50
F7: Temporal —0.01 0.009 —1.56 | 048
Gs: Spectral flux —0.29 0.007 —38.43 | 047
Random effects:
Variance
Speaker: o} 4.67°
Residual: o> 0.01°
Female speakers
| Fixed effects:
Estimate  Std. error  {-value r
Fo: Intercept 32.60 021  155.30
1z FO —1.01 0.03 —38.03 | 0.52
[32: Formant 3 —0.37 0.02 —22.31 | 0.52
B2 VQ —0.25 0.008 —32.56 | 0.52
[34: Formant 2 —0.41 0.02 —-23.96 | 0.52
[35: Formant 1 —0.29 0.01 —19.55 | 0.51
Fg: Formant 4 —0.32 0.01 —26.43 | 0.51
Gs: Spectral flux —0.29 0.009 —32.51 | 047
3z Temporal —0.13 001 —12.36 | 047
Random effects:
Variance
Speaker: o, 4.5°
Residual: o> 0.32




Conclusions

0 Overall, the acoustic variation impacts strongly the score of
the ASV system. We found correlations up to = 0.6 of the fitted

” model and the LLR score. Interestingly, our analysis confirms
v 20 . . . . c1 o .
o an important finding noted in [5] for a completely different cor-
o . -
3 pus (but the same, Kaldi x-vector system): FO mismatch plays
K 4 a key role. Unsurprisingly, differences in formants and voice
=l . .
a quality parameters contribute to degraded score, too.

-25-

50- .

-25 0 25
Fitted model (Female)



Thinking

* How to /nterpret the ASV score especially predicted through
deep neural networks (DNNs) ?

* How to build an explainable ASV system ?

* From speech signal analysis
* Which acoustic feature makes the score strange ?

* From speech information analysis
* Which information factor makes the score strange ?



Intra-class variation reduction of speaker representation
N disentanglement framework

Yoohwan Kwon, Soo-Whan Chung and Hong-Goo



Motivation

* Current speaker embedding still include speaker-unrelated
Information.

* To disentangle the embeddings with the use of relevant and
Irrelevant speaker information



Disentangled feature learning

2.2. Disentangled feature learning

Disentanglement is a learning technique that represents the in-
put signal’s characteristics through multiple separated dimen-
sions or embeddings. Therefore, it is beneficial for obtaining
representations that contain certain attributes or for extracting
discriminative features. Adversarial training [19-23] and re-
construction based training [24-28] are widely used to obtain
disentangled representations.

Tai at el. [5] proposed a disentanglement method for
speaker recognition that is the baseline for our work. By con-
structing an identity-related and an identity-unrelated encoder,
they trained each encoder to represent only speaker-related and
-unrelated information using speaker identification loss and ad-
versarial training loss. They also adopted an auto-encoder
framework to maintain all input speech information within out-
put embeddings. The information contained in the output em-
beddings is preserved using spectral reconstruction approaches.
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Methods

Same Speaker - El
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(¢) Mutual information loss

(a) Baseline loss (b) Identity change loss

Figure 1: Overview of proposed training criteria. (a) Training criteria based on [5]: speaker loss, disentanglement loss and recon-
struction loss. (b) Identity change loss: switch the speaker embedding to mean of those. (c¢) Mutual information loss: estimate the
mutual information from speaker and residual embeddings by MINE



Training objective

method with objective functions for training; speaker loss Lg,
disentanglement loss L sz, reconstruction loss L g and identity
change loss Lrc . The total objective function of the proposed
method consists of four loss functions:

Liotat =AM1Ls + XoLyr + AsLr 4+ AaLc. (2)

The hyper-parameters are set based on experimental results,
A1, ..., A4] = [1,0.1,0.1,0.1].
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Experimental results

Table 2: Ablation study of the proposed method

| Ls L’r‘ Ladv Lmi Lic | EER {%)
Baseline | vv vV - - | 3.83%
v o v v 3.711%
Proposed v v - v - 3.81%
P v Y v - V| 3.59%
v v - v v 3.18%
1 C
Logw = = ) log(softmax(fres);),
A jzl

Entr = E[To (A 1201 — log (E [eTg(f;i;k;f;i.s)D

A’ )

FE[Ty(fipnr f244)] — Log (B[eToUim 72T ),
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Thinking

* Flow-based disentanglement learning ?

* Not only preserve overall information, but also constrain distribution
property.

* Can we Include both speaker and phonetic labels, and build a
factorization model.

* The Ml and IC criteria may improve the performance of voice conversion.



