Decoupled modeling for NL Scoring (DE-NL)

Lantian Li 2020-08-31

General theory of verification decision

- Two-class hypothesis test
 - H_0 : the speech x is from the claimed speaker.
 - H_1 : the speech x is from an impostor.

• This is known as the likelihood ratio test.

$$LR = \frac{p(x|H_0)}{p(x|H_1)}$$

From LR to NL

- Normalized likelihood
 - $p(x|H_0)$: denotes as $p_c(x)$, which is a speaker-dependent item.
 - $p(x|H_1)$: denotes as p(x), which is a speaker-independent item.

$$NL(x|c) = \frac{p(x|H_0)}{p(x|H_1)} = \frac{p_c(x)}{p(x)}$$

NL reflects two key elements in open-set verification

- How to determine p(x|c) for an unseen class c?
 - We need an accurate p(x|c) to describe the within-class variance.
- How to define p(x) for any test data x?
 - We need a global p(x) to represent the normalization item.

Decoupled modeling for NL scoring

$$NL = \frac{p_c(x)}{p(x)} = \frac{p(x|x_1^c, \dots, x_n^c)}{p(x)} = \frac{\int p(x|u)p(u|x_1^c, \dots, x_n^c)du}{\int p(x|u)p(u)du}$$

- Decouple NL to three components
 - Enrollment: $p(u|x_1^c, ..., x_n^c)$ produces the posterior of class mean.
 - Prediction: p(x|u) computes the likelihood of x belonging to class c.
 - Normalization: p(x) computes the likelihood of x from all classes.

How to decouple ?

- Enrollment $p(u|x_1^c, ..., x_n^c)$ and Normalization p(x) are relevant to a global generative model, e.g., PLDA.
 - $p_g(u) = N(u; 0, \varepsilon I)$
 - $p_g(x|u) = N(x; u, \sigma I)$
- Predication p(x|c) regards as a local model
 - $p_l(x|u) = N(x; u, \Sigma')$

$$NL = \frac{p_c(x)}{p(x)} = \frac{p(x|x_1^c, \dots, x_n^c)}{p(x)} = \frac{\int p_l(x|u)p_g(u|x_1^c, \dots, x_n^c)du}{\int p_g(x|u)p_g(u)du}$$

Training process

- Global training
 - ML-PLDA

$$p(\boldsymbol{x}_1, ..., \boldsymbol{x}_n) \propto |\sigma \mathbf{I}|^{-n/2} |\boldsymbol{\epsilon} \mathbf{I}|^{-1/2} |(n/\sigma + 1/\boldsymbol{\epsilon}) \mathbf{I}|^{-1/2}$$
$$\exp\Big\{-\frac{1}{2\sigma}\Big\{\sum_i ||\boldsymbol{x}_i||^2 - \frac{n^2 \boldsymbol{\epsilon}}{n\boldsymbol{\epsilon} + \sigma} ||\bar{\boldsymbol{x}}||^2\Big\}\Big\},$$
(3)

where $|\cdot|$ defined is the absolute value of the determinant of a matrix. Given a training set consisting of K classes, the parameters ϵ and σ can be optimized by maximizing the likelihood function:

$$\mathcal{L}(\boldsymbol{\epsilon}, \sigma) = \sum_{k=1}^{K} p(\boldsymbol{x}_{1}^{k}, ..., \boldsymbol{x}_{n_{k}}^{k}),$$

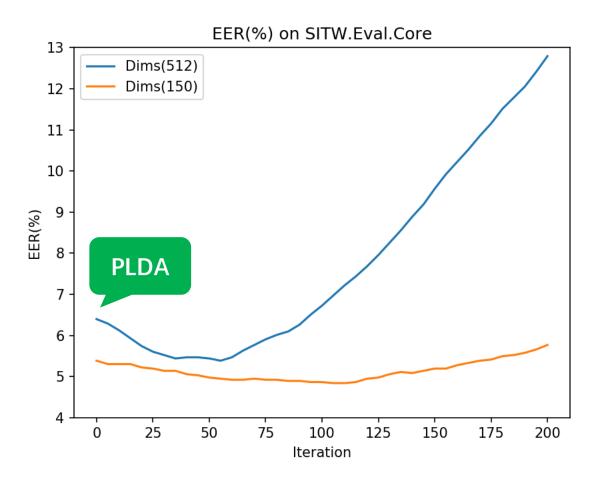
where \boldsymbol{x}_{i}^{k} is the *i*-th sample of the *k*-th class.

• Local training • MLLR x' = Mx

$$\begin{aligned} \mathcal{L}(\mathbf{M}) &= \prod_{k}^{K} \prod_{i=1}^{n_{k}} \int p_{l}(\boldsymbol{x}_{i}^{k} | \boldsymbol{\mu}, \tilde{\boldsymbol{\Sigma}}) p_{g}(\boldsymbol{\mu} | \boldsymbol{x}_{1}^{k}, ..., \boldsymbol{x}_{n_{k}}^{k}) \mathrm{d}\boldsymbol{\mu} \\ &= \prod_{k}^{K} \prod_{i=1}^{n_{k}} \int p_{g}(\mathbf{M} \boldsymbol{x}_{i}^{k} | \boldsymbol{\mu}, \sigma \mathbf{I}) p_{g}(\boldsymbol{\mu} | \boldsymbol{x}_{1}^{k}, ..., \boldsymbol{x}_{n_{k}}^{k}) \mathrm{d}\boldsymbol{\mu} \\ &= \prod_{k}^{K} \prod_{i=1}^{n_{k}} \mathcal{N}(\mathbf{M} \boldsymbol{x}_{i}^{k}; \frac{n_{k} \epsilon}{n_{k} \epsilon + \sigma} \bar{\boldsymbol{x}}_{k}, \mathbf{I}(\sigma + \frac{\epsilon \sigma}{n_{k} \epsilon + \sigma})). \end{aligned}$$

Any numerical optimizer can be employed to optimize the above objective function, for instance stochastic gradient descend (SGD).

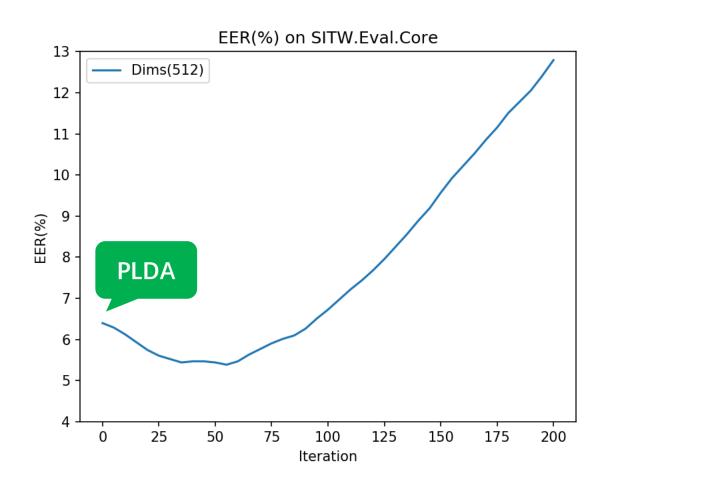
Basic EER results



EER(%) results on SITW.Eval.Core

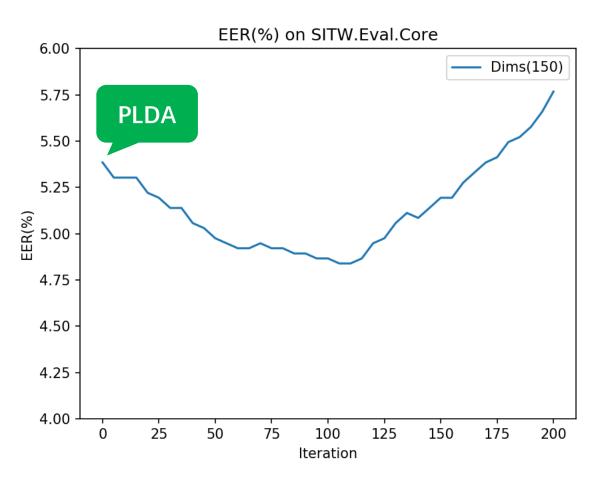
x-vector	PLDA	DE-NL
512	6.397%	5.385%
150	5.385%	4.839%

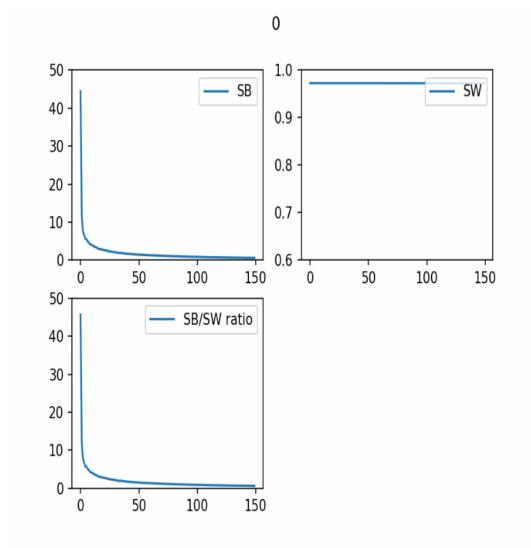
Change of Statistics (512)





Change of Statistics (150)





We need more thinking

- Observations
 - DE-NL outperforms the standard PLDA.
 - The curve of within-speaker variance does not match the PLDA assumption.
- Questions
 - How to explain the change of within-speaker variance ?
 - How to determine the optimal iteration ?

Analysis of local model $p_l(x|u)$

$$\mathcal{L}(m) = -\sum_{k}^{K} \sum_{i}^{n_{k}} (mx_{i}^{k} - \frac{n_{k}\epsilon}{n_{k}\epsilon + \sigma} \bar{x}_{k})^{2}.$$

Then let the gradient to be zero:

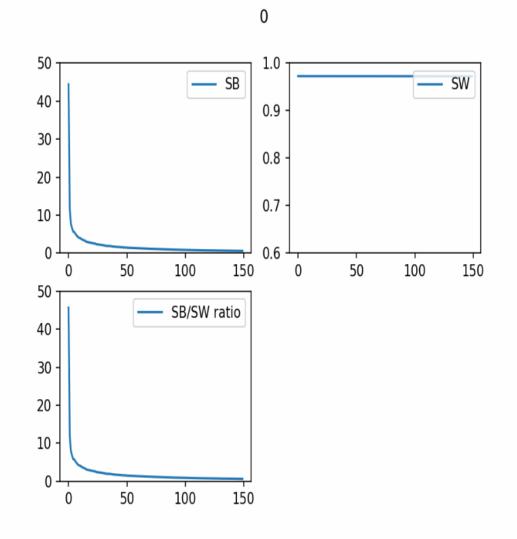
$$\frac{\partial \mathcal{L}(m)}{\partial m} = -\sum_{k}^{K} \sum_{i}^{n_{k}} 2(mx_{i}^{k} - \frac{n_{k}\epsilon}{n_{k}\epsilon + \sigma}\bar{x}_{k})x_{i}^{k} = 0$$

A simple arrangement shows the follows:

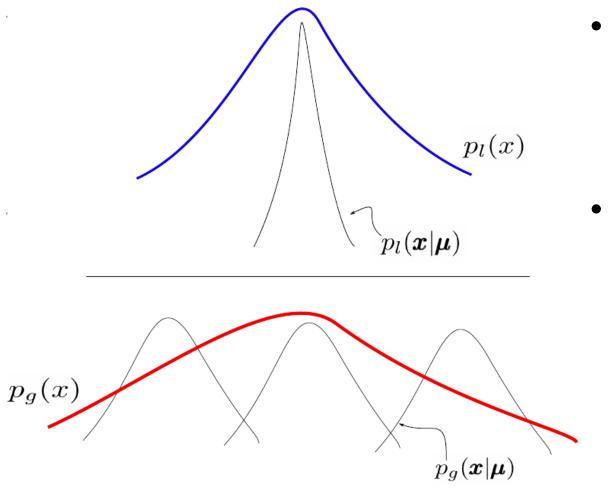
$$m^* = \frac{\sum_{k}^{K} \frac{n_k^2 \epsilon}{n_k \epsilon + \sigma} \bar{x}_k^2}{\sum_{k}^{K} \sum_{i}^{n_k} (x_i^k)^2}.$$

According to the linear Gaussian assumption, the mean \bar{x}_k follows Gaussian $N(0, \epsilon + \frac{\sigma}{n_k})$, x_i^k follows Gaussian $N(0, \epsilon + \sigma)$, the expectation of $(x_i^k)^2$ is $(\sigma + \epsilon)$. If we assume $n_k = n$ for all the classes, we have:

$$m^* = \frac{n^2 \epsilon}{n\epsilon + \sigma} \frac{K(\epsilon + \frac{\sigma}{n})}{nK(\epsilon + \sigma)} = \frac{\epsilon}{\epsilon + \sigma}$$



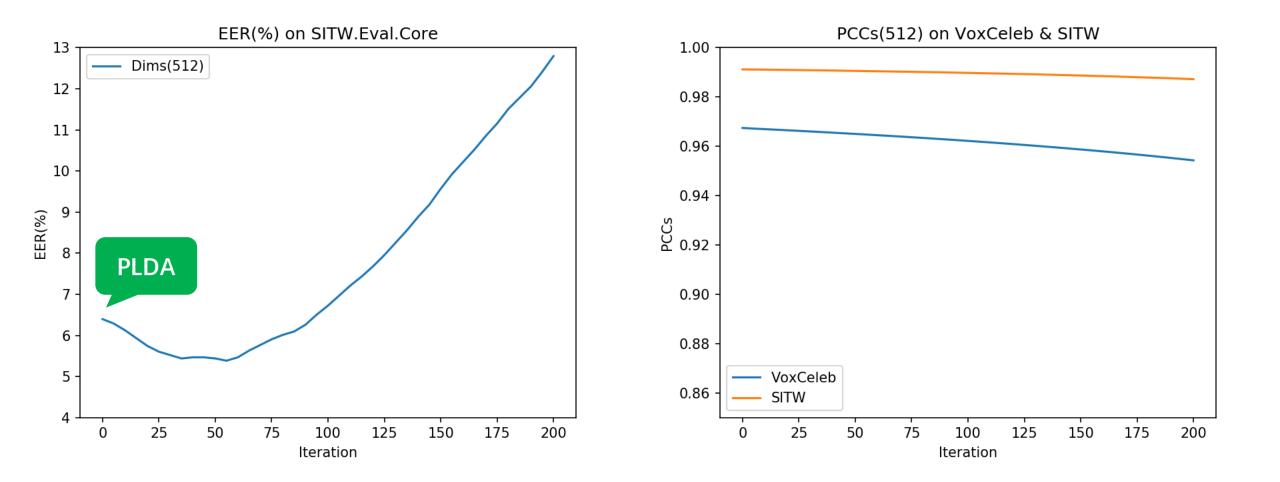
 $p_l(x|u) \vee s_p_g(x|u)$



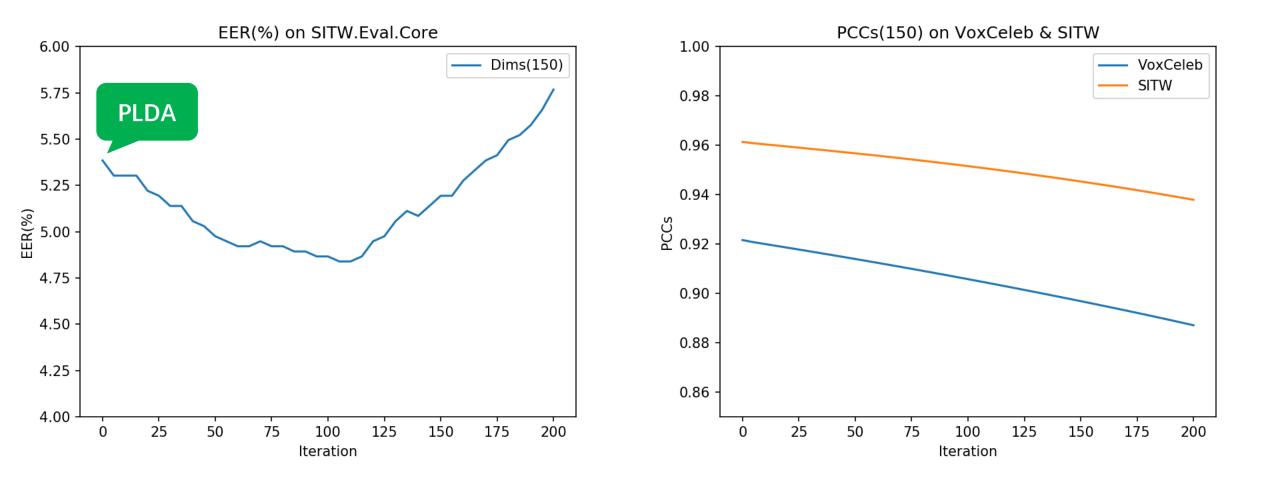
- Good thing
 - More accurate local model $p_l(x|u)$
- Potential problem
 - incorrect normalization item $p_l(x)$ and $p_g(x)$

Correlation { $\log p_g(x)$, $\log \sum_{c} p_l(x)$ }

Correlation (512) with iterative training



Correlation (150) with iterative training



Conclusions

- This decoupled NL is flexible and shows good performance.
- We may add a regularization to balance the ideal normalization $\sum_{c} p_{l}(x)$ and practical normalization $p_{g}(x)$.
- More analysis on DE-NL with LN.