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Abstract

Speaker verification suffers from serious performance degradation under speaking
rate mismatch condition. This degradation can be largely attributed to the
spectrum distortion caused by different speaking rates. This paper proposes a
feature transform approach which projects speech features in slow speaking rates
to features in normal speaking rates. The feature space maximum likelihood
linear regression (fMLLR) is adopted to conduct the transform, under the
well-known GMM-UBM framework.

The proposed approach has been evaluated on the CSLT-SPRateDGT2016
corpus which consists of normal and slow speech. The experiments show that
with the transform, the equal error rate (EER) of the GMM-UBM system was
reduced by 19.04% relatively. More interestingly, the transform learned based on
the GMM-UBM system can improve i-vector systems as well. Our experiments
show a 10.16% relative EER reduction after the transform was applied to the
i-vector/PLDA system.
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1 Introduction
Speaker verification authenticates the claimed identity of a person by speech input.

After a decade of research, current speaker recognition (also known as voice print

recognition, or VPR) systems have attained rather satisfactory performance, given

that the enrollment and test speech are sufficient and the quality is high [1, 2].

However, when there is mismatch between the enrollment and test speech data, the

performance is often seriously degraded.

Speaking rate is one particular mismatch that causes the degradation. If a s-

peaker enrolled itself in a normal speaking rate, but test with a slower or faster

speech utterance, mismatch occurs. Unfortunately, abnormal speaking rate is often

observed in practical systems. For instance, people tend to speak faster if he/she is

in a rush state. Conversely, one may speaks slowly due to the exhaustion or illness.

Little difference in speaking rate between enrollment and test speech will not be a

problem, but substantial mismatch may lead to serious performance degradation.

Considering that robustness is a major concern for most applications, it is necessary

to study the impact of speaking rate to speaker verification systems.

For fast speech, the speaking rate challenge can be largely attributed to the re-

duced speaker information caused by shortened speech signals. A possible solution
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is to change the frame rate so that more data can be accumulated [3]. In our ex-

periments, we found that fast speech caused just minor performance reduction, and

so do not deal with it in this study. In contrast, we found slow speech caused clear

performance reduction. A thorough analysis shows that when people speak slowly,

the spectrum of the speech signals are often damaged seriously. On one hand, this

may be attributed to the abnormal articulatory movement caused by the lengthened

pronunciation, and on the other hand, it may be caused by the abnormal behavior

(e.g., special emotion expression) when a speaker intentionally speaks slowly. Put

in another way, the spectrum damage may be not caused by slow speaking, but

associated with slow speaking. The spectrum damage was also found by Zeng et

al. [4] in speech recognition.

The research on the speaking rate is still preliminary in speaker recognition. Early

studies mainly focused on the impact of speaking rate to speaker recognition sys-

tems. For example, performance degradation was confirmed by [5] when mismatch

on speaking rate (fast and slow) exists. A similar study was proposed in [6], where

mismatch in both channel and speech style (including speaking rate) was studied.

A normalization approach was proposed to mitigate the impact of speaking rate

mismatch [7]. In this approach, phoneme duration was used as an extra feature and

was augmented to the conventional Mel frequency cepstral coefficients (MFCCs).

Their experiments on the YOHO corpus confirmed that with this normalization,

both robustness and accuracy of their speaker verification was improved.

This paper proposes a feature transform approach to deal with the speaking rate

mismatch problem. The basic idea is to learn a linear transform that maps acoustic

features of slow speech to features of normal speech. With this transform studied,

test utterances in slow speaking rate can be transformed to utterances in normal

speaking rate, therefore mitigating the mismatch between enrollment and test. In

this study, the feature space maximum likelihood linear regression (fMLLR) [8] is

adopted to train the transform, due to its simplicity and effectiveness. Although

the fMLLR learning is based on the Gaussian mixture model-universal background

model (GMM-UBM) architecture, the learned transform is model independent and

can be applied to speaker verification systems based on any model, for instance the

popular i-vector/PLDA architecture.

The rest of the paper is organized as follows: Section 2 introduces the fMLLR

approach, and Section 3 describes the experimental settings and results. Section 4

concludes the paper and discusses some future work.

2 Feature space linear transform
In this section, we first analyze the impact of speaking rate on speech features.

Based on this analysis, the fMLLR-based feature transform is proposed to address

the speaking rate mismatch problem.

2.1 Feature analysis

As has been discussed in Section 1, we argue that a slow speaking rate damage

speech spectrum, hence reducing performance of speaker verification systems. To

verify this argument, we trained two UBMs (UBMnorm and UBMslow) that repre-

sent the normal and slow speech, respectively. These two UBMs were adapted from
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a global UBM via MAP using normal and slow speech respectively. In this MAP

adaptation, only the mean vectors were updated. By this configuration, the mean

vectors of the two UBMs can be regarded as representations of normal and slow

speech. We draw these mean vectors in a two-dimensional space using t-SNE [9],

and the results are shown in Fig. 1, where each point represents a mean vector of

a particular Gaussian component. It can be seen that the Gaussian components

of UBMnorm and UBMslow clearly deviate from each other in a systematic way.

Particularly, several most significant deviations are aligned to a similar direction.

Although this can not be regarded as an evidence that the corresponding Gaussian

components are changed in a linear way (due to the nonlinear nature of t-SNE), we

can still assume a linear transform that can map speech features of slow speech to

those of normal speech.
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Figure 1 The mean vectors of the Gaussian components of UBMnorm and UBMslow, visualized
by t-SNE. The circles represent Gaussian mean vectors of UBMnorm, and the triangles represent
Gaussian mean vectors of UBMslow.

2.2 Feature space linear transform

We design a linear transform that can project speech features of slow speech to those

of normal speech. Ideally, different speaking rates should have different transforms as

they may cause different damage on speech spectrum. However, training speaking-

rate-dependent transforms suffers from data sparsity. We therefore train and apply

a single projection for all the slow speech, in spite of its exact speaking rate.

Feature space maximum likelihood linear regression (fMLLR), also known as Con-

strained Maximum Likelihood Linear Regression (CMLLR), is adopted in this work.

The effectiveness of fMLLR has been demonstrated in [10] in which speech fea-

tures in one language is projected to another language. For a clear presentation, we
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give a brief introduction to the fMLLR approach. Define a transformation matrix

W = [b A] that projects an input speech signal xi as follows:

x̂i = Axi + b = Wξi (1)

where A is a rotation matrix and b is a bias term. ξi = [1 xi]
T is the extended

observation vector. The optimal W can be attained by maximizing the following

likelihood function

Q(W ;X,M) =
∑
i

log(p(Wξi;M)) (2)

with respect to W , where M = {µc, σc} represents the GMM based on which the

fMLLR is conducted, and p(x;M) is the probability of signal x given by the GMM

parameterized by M . The optimization process can be found in [8].

When applying fMLLR to transform acoustic features, a projection matrix WSN

should be learned, where S is the features in slow speaking rate and N is the target

features. First of all, a UBM is trained using all the enrollment speech in the develop-

ment set, via MAP adaptation from a global UBM trained with all the development

data. Since all the enrollment speech are in a normal speaking rate, the UBM rep-

resents normal speech, and is denoted by UBMnorm. Assume Xslow denotes the

speech features of all slow speech in the development set, the projection matrix

WSN is trained by maximizing the objective function Q(WSN ;Xslow, UBMnorm)

in (2).

It should be highlighted that although the fMLLR transform matrix is trained

under the GMM-UBM architecture, the learned transform can be applied to verifi-

cation systems based on any models, e.g., the i-vector architecture and the recent

DNN-based system [11], so long as they use the same features.

3 Experiments
The proposed fMLLR approach was evaluated on a speech database collected by

ourselves. We first present the data, and then report the results with the fMLLR

transform, on a GMM-UBM baseline and an i-vector baseline.

3.1 CSLT-SPRateDGT2016 database

The goal of this research is to study the impact of speaking rate on speaker verifica-

tion. Therefore, the variations caused by other factors such as channel and linguistic

content should be excluded.

We had several choices at the beginning. For example, the CHAINS corpus [12]

that consists of SOLO (in a comfortable speaking rate) and FAST speech record-

ings. However, there is clear channel variation: they recorded the speech signals

with different microphones (Neumann U87 condenser microphone and AKG C420

headset condenser microphone). Furthermore, the SOLO and FAST recordings were

recorded within a 4-months interval, which may causes temporal variation. In short,

existing databases could not meet our requirements for the speaking rate research,
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Table 1 EER results of the GMM-UBM baseline

Condition Enroll Test EER%
Matched norm. norm. 2.55
Mismatched norm. slow. 7.64

so we decided to record a new database by ourselves. The resultant database was

named as CSLT-SPRateDGT2016.

The speech signals in CSLT-SPRateDGT2016 were recorded by a smart phone,

with the sampling rate set to 16 KHz and the sample size set to 16 bits. As described

above, we want to exclude variations caused by any factors besides speaking rate, so

the same phone was used in the entire recording. For the same reason, the transcripts

of the enrollment and test speech were identical for all the speakers.

The recordings involve standard Chinese digital strings, and there are 26 speakers

in total in the database. Each speaker recorded 5 digital strings for enrollment and

25 digital strings for test. Each digital string of these 25 utterances was recorded in

both normal and slow speaking rate. We chose data of 15 speakers from the database

as the development set, and data of the rest 11 speakers as the evaluation set. The

development set was used to train the feature transform and develop the speaker

verification systems, and the evaluation set was used to test system performance.

3.2 Baseline System

The baseline system in this study was based on the GMM-UBM framework. We

used 60-dimensional MFCCs as the acoustic feature, which includes 20-dimensional

static components and their first and second derivatives. Cepstral mean and variance

normalization(CMVN) was used to remove the channel effect.

The UBM was trained using a large volume of data in standard Chinese, using

the expectation-maximization (EM) algorithm. The speaker GMMs were adapted

from the UBM via MAP. We report the test results in two conditions, the matched

condition involves test speech in a normal speaking rate, and the mismatched con-

dition involves test speech in a slow speaking rate. There were 3,025 trials in each

condition. The Kaldi toolkit [13] was used to build the system.

Table 1 shows the performance in terms of equal error rate (EER). It can be seen

that the EER value in the speaking rate mismatched condition is much higher than

that in the matched condition. This means that speaking rate mismatch between

enrollment and test indeed causes significant performance reduction in speaker ver-

ification.

3.3 fMLLR results for GMM-UBM system

The fMLLR transform was trained based on the CSLT-SPRateDGT2016 database.

A normal (slow) UBM was firstly trained using the normal (slow) speech in the

development set via MAP adaptation (adapted from the global UBM used in the

GMM-UBM baseline). The fMLLR was then trained to maximize the objective

function (2), where the speech signal X was the slow speech in the development

set. The EER results with the fMLLR transform are shown in Table 2. It can be

seen that the fMLLR transform improved the system performance when condition

mismatch exists, and the relative EER reduction is 19.11 %.
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Table 2 EER results with FMLLR-based transform

Condition Enroll Test EER% Transform
Matched norm. norm. 2.55 no
Mismatched norm. slow. 7.64 no
Mismatched norm. slow. 6.18 yes

Table 3 EER results with the FMLLR-based transform under i-vecoter framework.

Condition Enroll Test EER(%) Transform
Cosine PLDA

Matched norm. norm. 4.00 1.82 no
Mismatched norm. slow. 13.09 3.64 no
Mismatched norm. slow. 12.36 3.27 yes

3.4 fMLLR for i-vector system

Since the fMLLR transform operates in feature space and is model-independent, it

can be applied to any system, so long as the system use the same feature as the

GMM-UBM system. To verify this argument, we constructed an i-vector system

and evaluated the contribution of the fMLLR transform learned from the GMM-

UBM system. The UBM was the same as the GMM-UBM system, and the i-vector

dimensionality was set to 100. The i-vector model was trained using the same data

as in the GMM-UBM framework. But the PLDA was trained using a larger database

that consists of 4, 329 utterances from 231 speakers. We used a larger database for

PLDA is because the number of speakers of CSLT-SPRateDGT2016 is too small to

train a reasonable PLDA model.

To apply the fMLLR transform to the i-vector system, we first extracted MFCC

features for all the test utterances in slow speaking rate, and then transformed

these features using the fMLLR learned under the GMM-UBM system. Note that

the enrollment data were not transformed as they are normal speech already. After

extracting i-vectors, we evaluated the system performance, using both cosine scoring

and PLDA scoring.

Table 3 shows the EER results of the i-vector system. we can observe that in

the mismatched condition, the system performance was improved with the fMLLR

transform, with both cosine scoring and PLDA scoring. The relative EER reduction

are 5.58% and 10.16% with cosine scoring and PLDA scoring, respectively. This

confirms our conjecture that fMLLR transform is global and can be used freely for

various systems based on different model.

4 Conclusions

In this paper, we study an fMLLR-based feature transformation method to mitigate

the impact of speaking rate mismatch on speaker verification systems. Our prelim-

inary experiments show that slow speech tends to cause substantial performance

reduction, and the proposed fMLLR-based approach can diminish this reduction

when there is a mismatch in the speaking rate between enrollment and test. De-

spite the promising results, our study is still limited. We conjecture that training

different transformation for different speaking rates may offer more improvement.

Future work involve collecting more data and studying more complicated trans-

forms.
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