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Mutual Information
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MI(xz,y) = H(x) — H(z|y)




Graphical representation
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How If we know MI

O 000
« Make the representation more o 0 [
representative
O
* Make the representation more o 0
disentangled
O

 Make the representation more concise o 0 AN



How to estimate MI?

* Counting: count N(x,y) and N(x) and N(y)
« Kernel based: computing simility based on kernel
e [ikelihood: computing p(y|x) and p(y), by function approximation

Tsai et al., Neural Methods for Point-wise Dependency Estimation, NIPS 2020.



Estimate by maximize lower bound

 Design a function q(x|y), and then construct a lower bound of MI.

X L qlxly)
I(X:Y)=E,.. [log
( ) p(z.y) ()

+ By [KL(p(z|y)|la(2y)))
> Eyp(ay) log q(z]y)] + h(X) £ Iga

Poole et al., On Variational Bounds of Mutual Information, ICML 2019.



Example in infoGAN

mén max Vi(D,G)=V(D,G) — X(c;G(z,¢))
I(c;G(z,¢)) = H(c) — H(c|G(z,¢))
— EmNG(z c)[Ec '~P(c|z) [logP( i’| )” + H(C)
= Eoncz,0[Dru(P(]2) [| Q(12)) + Eer v p(ela [log @(c'| )] + H(c)

>0

> EmNG(zﬁc) [EC’NP(C\:C) [log Q(C!‘ZC)]] + H(C)

« Chenetal., INfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets, NIPS 2016.



Example in infoGAN

(a) Rotation (b) Width

« Chen et al., INfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets, NIPS 2016.



Other bounds

{lp(:c,y) [f(qa U)] P(U) [lOg Z(y)} o IUBA
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Poole et al., On Variational Bounds of Mutual Information, ICML 2019.



Point-wise estimation

* Having point-wise MI f(x,y)=log p(x,y)/p(xX)p(y) or relevance
r(x,y)=p(x,y)/p(x)p(y), it is possible to estimate the entire MI.

p(z,y)

[(X:Y) = Dx(Pxy || PxPy) = /[p(T y)log p(x)p(y)

dedy = Ep, logr(z,y)]

~ Ep, , [log7g(z,y)] = Ep, . [fo(z,y)],

Tsai et al., Neural Methods for Point-wise Dependency Estimation, NIPS 2020.



Ponit-wise estimation: Variational Bounds

 Use JS bound, once optimized, obtain the optimal PMI function

Iys :=supEp, , [ — softplus( - fg(.’l?, y))} — Ep, p, {softphls (fg.-(:r, y))}
e

f3 (x,y) = log (p(x, y) /p(z)p(y))

Tsai et al., Neural Methods for Point-wise Dependency Estimation, NIPS 2020.



Point-wise estimation: Density matching

* Matching p(x,y) in terms of KL distance.
« Once optimized, obtain the PMI function

inf Dgi(Pxy || Poxy) = inf I(X;Y) —Ep,, [fa(-’ﬂ:y)] < sup Ep, {fe(r’ﬂ} y)]
e e 0cO

po(z,y) == ef*@¥p(x)p(y)

max Ep, , [fo(w,y)], subjectto Ep, p, [e/?(®9)] =1
F_

1;163,{3-: ]EPX,Y' [ff?(m: TJ)] —A- (EPXPY [Bf&im:y)] - 1)

Tsai et al., Neural Methods for Point-wise Dependency Estimation, NIPS 2020.



Point-wise estimation: Probabilistic Classifier
Method

« (ast the problem of relevance computing to a discrimination task, to classify if (x,y) are from the true joint distribution.
« (C denotes the class: C=1 means from true distribution, C=0 means from noise.

npypy Po(C =1]1,y)
Npx y ﬁf)(c = ’ [B,y)

ro(x,y) = , with (z,y) ~ Pxy or (z,y) ~ PxPy

Tsai et al., Neural Methods for Point-wise Dependency Estimation, NIPS 2020.



Point-wise estimation: Density-Ratio Fitting
Method

 Estimate the relevance directly

1

. ,\ 2 - N
E}Ilf EPXPY [(T(I, y) — TQ('I'; y)) ] < Sup EPX?Y [TQ(:C? y)] o _EPXPY [Tg (:E? y)]
€o IS 2

Tsai et al., Neural Methods for Point-wise Dependency Estimation, NIPS 2020.



Experiment1: Ml approximation

MI (nats)

Ml (nats)
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Figure 1: Gaussian and Cubic task for correlated Guassians with tractable ground truth MI. The upper row are
the baselines and the lower row are our methods. Network, learning rate, optimizer, and batch size are fixed for
all MI neural estimators. The only differences are the learning and inference objectives shown in Table 1.

Tsai et al., Neural Methods for Point-wise Dependency Estimation, NIPS 2020.



Experiment 2: Self supervised representation
learning

Connection between Contrastive Learning and PD  Our goal is to show that our learning objec-
tives resemble contrastive learning. We first take the Probabilistic Classifier approach as an example
and incorporate the learning of F'/G, which we name it as Probabilistic Classifier Coding (PCC):

Sup Sup Epy, v, logpo(c = 1{(F(v1),G(v2)))] + Epy, py, [log (1 — po(c = 1|(F(v1), G(vé))))}, (10)
; c
which aims at learning F'/G to better classify (i.e., differentiate) between similar or random data

pairs. Next, we consider the Density-Ratio Fitting approach, which we refer to the objective as
Density-Ratio Fitting Coding (D-RFC):

. 1 . /
sup sup Epy, o, [fo(F(01), G(02))] = 5By, my, 73 (F (1), G(05))], (1)
F.G 6€6
which aims at learning F/G to maximize 79 (F'(v1), G(v2)) and minimize 79 (F'(v1), G(vg)). We
leave the discussion for the adaptations of Variational MI Bounds, Density Matching I ,and Density
Matching II in Supplementary.



Experiment 2: Self supervised representation
learning
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Figure 2: Shallow [5] and Deep [5] task for self-supervised visual representation learning using downstream
linear evaluation protocol. We compare the presented Probabilistic Classifier Coding (PCC) and Density-Ratio
Fitting Coding (D-RFC) with baseline Contrastive Predictive Coding (CPC). Network, learning rate, optimizer,
and batch size are fixed for all the methods. The only differences are the learning objectives.



Experiment 3: Cross-modal Learning

« Match audio feature and video feature, using probabilistic classifier

Correct Audio-Textual Retrieval Examples (Top-1 Accuracy: 96.24%)

Audio Feature | Textual Features (Ranked by logarithm of point-wise dependency)
depths depths (15.22)  mildewed (-58.62)  lugged (-92.24) alison (-108.02)  raffleshurst (-161.74)
receptacle receptacle (1.32) bloated (-15.41) recreate (-39.77) sting (-90.51) pity (-104.44)
frontiers frontiers (3.36)  institution (-31.01) laterally (-54.17) pretends (-105.11)  vibrating (-124.88)

Incorrect Audio-Textual Retrieval Examples

Audio Feature | Textual Features (Ranked by logarithm of point-wise dependency)
cos tortoise (-2.33) cos (-10.72) tickling (-12.53)  undressed (-18.11)  cromwell’s (-44.31)
elbowing itinerary (-6.51) elbowing (-8.22) swims (-12.98) rigid (-24.14) integrity (-39.76)
alma’s roughness (-3.11) alma’s (-3.67) montreal (-11.81) tuneful (-12.22) levant (-18.26)




Experiment 4: Disentangled representation

 Train a Max MI system with some constraints (important!)
e Let the code sets share no information

maximize 1(X;Y)

p(y|x)

K
subjectto TC(Y) =) I(X;Y;) = I(X:Y) <4
=1

o ()ple) K L(p(y|x)||lp(yle +¢€))] < v

Poole et al., On Variational Bounds of Mutual Information, ICML 2019.



Experiment 4: Disentangled representation
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Figure 5. Feature selectivity on dSprites. The representation
learned with our regularized InfoMax objective exhibits disen-
tangled features for position and scale, but not rotation. Each row
corresponds to a different active latent dimension. The first column
depicts the position tuning of the latent variable, where the x and y
axis correspond to x/y position, and the color corresponds to the
average activation of the latent variable in response to an input
at that position (red is high, blue is low). The scale and rotation
columns show the average value of the latent on the y axis, and the
value of the ground truth factor (scale or rotation) on the x axis.

Poole et al., On Variational Bounds of Mutual Information, ICML 2019.



Discussion: MI and supervised learning

 Learning q(y|x) that maximize the lowerbound of MI.

 The optimal q(y|x) is p(y|x), by which the lower bound is tight.

« This is equal to the CE loss if y is the target label and x is the input feature.
« This means that CE can be used to perform MI estimation, as in infoGAN.

« This also explains the revers gradient in domain advesarial training (e.g., making the code less sensitive to domains). Once the classifier is well
trained by CE on the domain label, it estimates MI of the code and the domain label, hopefully. Fixing the classifier and reversing the gradient
makes the code and the domain label has a lower MI, i.e., less dependent. Note that since the reverse gradient ‘decrease the LOWER bound
parameterized by q that was estimated with the old data’ , it is not necessarily decrease the true MI really, though there is possibility.

MI(X,Y) = Eu.y Inglylr)/ply) +Inp(ylz)/q(y|x)
= [Ep(m?y) In q(y @")}r H(y) + Ep) K L(p(y|x)||q(y|z))




Discussion: MI in representation learning

« We certainly want to learn representation y that can ‘represent’ x.

« How it means? By maximizing MI, it means y can be predicted from x
with less uncertainty. Note MI(X,Y) = H(Y) - H(Y|X)

« But only MI does not mean a better representation. E.g., a simple
invertible function leads to perfect representation, and MI(X,Y)=H(Y).

x=0G(2) pe(X)

=

Normal Distribution

1

z=G6"1(x)



Discussion: MI in representation learning

« Bias is required to generate reasonable
reprentation

» VAE: Bottleneck, discard some trivial information

» Dbeta-VAE: control the strength of the information
propagated to the code

« DC-IGN: clamp certain factors
e InfoGAN: Maximum MI on partial codes

« The information flow should be carefully
designed (dimension control is not enough)

« Using multiple objectives is important

DC-IGN InfoGAN B-VAE VAE
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Kulkarni et al., Deep Convolutional Inverse Graphics Network, 2015.
Higgins, B-VAE: LEARNING BASIC VISUAL CONCEPTS WITH A CONSTRAINED VARIATIONAL FRAMEWORK, 2017



Conclusions

 Mutual information is an important measure/criterion in learning good
representations.

M| can be computed in a point-wise.
* Ml is closely related to ML and contrastive learning.




