


Speaker recognition

Voiceprint recognition

One kind of biometric authentication technology

e by using speaker-specific information contained in
speech waves

e “non-contact, non-intrusive and easy to use”

e ranked first by consumer preference among
biometric measures according to a Unisys survey



* Commercial
e ABN AMRO & Voice Vault
e NAB & Telstra Salmat VeCommerce
e CCB & d-Ear

» Public service
e Wellpoint

* Public & national security
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¢ Common ones in speech-related technologies

e Poor-quality voice samples
e Background noise
e Channel mismatch

* Specific ones in speaker recognition technology
e Short utterance
e Within-speaker variability

« Speaking style, emotion, physical status, changes
over time...

Time-Varying Speaker Recognition: An Introduction 4



training phase

: Feature . Speaker-model i
| \M )17 Extroction/ )/7 Modeling /ﬁ Database i

______________________________________________________________________________________

testing phase

i Accept/ i
i W _)7 Eite}ggirgn / 4)7/ Scoring / — |

P,
a
threshold T

e e e e e e — — — — — — — — o ———— e —— . ———— — —— — ———

Framework of a classic speaker verification system
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* “Does the voice of an adult change significantly
with time? If so, how?”’ [Kersta 1962]

* “How to deal with long-term variability in
people’s voice?” [Furui 1997]

* “Voice changes over time, either in the short-

term, the medium-term, or in the long-term.”
[Bonastre et al. 2003]
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Time-varying Issue

Performance degradation

e “The longer the separation between the training
and testing recordings, the worse the
performance.” [Soong et al. 1985]

e Asignificant loss in accuracy between two
sessions separated by 3 months

4~5% in EER [Kato & Shimizu 2003]
Ageing was considered to be the cause [Hebert 2008].

e A voiceprint access control system in CCNT lab
69.02% t0 74.19% [Shan & Yang 2005]



* A generally acknowledged phenomenon

e Speaker recognition performance degrades
with time varying.
o “Mysterious factors” [Kenny et al. 2007]

* How to deal with this issue?
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* More training data lead to more representative
models

* Several researchers resorted to several training
sessions over a long period of time to help
coping with the long-term variability of speech.

g [BlmbOt Et GI. 2004] training utterances
e [Soong et al. 1985] W

training utterance

Time-Varying Speaker Recognition: An Introduction 10



* The best speaker recognition result was obtained
when 5 sessions successively separated by at
least 1 week were used to define the reference
(training) set. [Markel and Davis 1979]
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* When a positive identification of the candidate
speaker is made, extra data is appended to the
original enrollment data to provide a more
universal enrollment model for the
candidate.[Beigi 2009] [Beigi -~ "
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Fig, 3. [dentification Time Lapse — Augmented-Data Enrollment
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* To use MAP adaptation to adapt from the
original model to a new model considering new
data at hand. [Beigi 2009] [Beigi 2010]

B % & &
T

Error Rt (%)
@ 5] i
3+

e

.| —8— U=ual Ervollment o
# |+ == magroened-Data Ercallment
-

1l Adapied Errallment 1

- P
N = @ = kdapied Errollment S

aaaaa
-
-

ikl
Fig, 5. Identification Tine Lapse

Time-Varying Speaker Recognition: An Introduction

14



* To use MLLR-based speaker-adaptation

technique to reduce the effects of model aging.
e [Lamel & Gauvin 2000]

e EER on the last two sessions is reduced to 1.7%
from 2.5%, after adapting the speaker models on
data from the intervening session.
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* Verification scores of genuine speakers
decreased progressively as the time span
between training and testing increases, while

impostor scores were less affected. [Kelly & Harte
2011] [Kelly et al. 2012]

Log Likdihood Ratn
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Figure 1. LLR scores for all 18 speakers: (a) genuine speakers,
wards, (b) genuine speakers, backwards, (¢) impo t 8, forwa
(d) imposters, backwards
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Threshold Decision

A stacked classifier method of introducing an
ageing-dependent decision boundary was
applied, significantly improving long-term
verification accuracy. [Kelly & Harte 2011] [Kelly et al. 2012]

| Age Progression (years) | 5 | 10 [ 20 | 40 | &0 |
Forwards

Fixed Threshold 10.8 | 150 | 265 | 322 | 36.1

Ageing-dependent 73 | 92 | 104 | 172 | 175

Backwards

Fixed Threshold 13.7 | 181 | 189 | 24.8 | 201

Ageing-dependent 102114 | 123 | 17 | 219

Laog Likelihood Ratic

Age Progression (years) Table 1. Average HTER for all 18 speakers in the Speaker Ageing

Figure 3. A global ageing-dependent decision boundary trained Database acrozs different ranges of age progression.
from 17 speakers® LLR scores and age progression information
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* The CORE problem in pattern recognition [Huang et
al. 2001]

* An IDEAL feature for speaker recognition [Kinnunen
& Li 2010] [Rose 2002] [Wolf 1972]

e Have large between-speaker variability and small
within-speaker variability

e Not be affected by long-term variations in voice
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More Stable Features

Fundamental frequency generally fluctuates

randomly across time-varying sessions. [Chen & Yang
2010] [Lu 2008]

SMFCC [Lu 2008]

e Smooth the amplitude spectrum and calculate the
spectral envelope

e Gender-dependent performance

It works better in female case, and not so good in
male case.



* Anideal case

e Users of speaker recognition systems log-in
from time to time, to update their models

e Advantages
« Utterances from the genuine speaker
« “Up-to-date” models

e Disadvantages
» User-unfriendly, extra burden
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¢ Structural Training & Model Adaptation

e More training data and extra adaptation data
e Advantages

* No extra burden for users
e Disadvantages
* Higher requirements on systems
e Alonger registration process

e “Threshold” of utterances from the genuine speaker
* Blind update

e Nothing to do with the NATURE of time-varying
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* Ageing-dependent decision boundary and SMFCC

e Solutions regarding the trends how fundamental
frequency and verification score change over time
e Disadvantages

* Both have their own restrictions
e Advantages

* This kind of “targeted” attempts should be a

natural research direction in time-varying speaker
recognition
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* Trends are obtained from careful data analysis.

* A proper longitudinal voiceprint database is
needed for time-varying research in speaker
recognition, which will be elaborated in my
second presentation.
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