Weekly Report

Cross-Domain Speaker Recognition

Cross-Domain scenario

- Cross-lingual
- Time-drifting
- Transpathology
- Cross-device
- Cross-environmental
- Cross-directional

Return of Frustratingly Easy Domain Adaptation

CORrelation ALignment (CORAL)

Visual Domain Shift Domain 1 Domain 2

Textual Domain Shift Guiness is an engaging and

enthusiastic speaker. I tried reading this book but found it so turgid and poorly written.

It's speedy and space saving and inexpensive. Got it at Walmart can't even remove a scuff.

$$D_{S} = \{\vec{x}_{i}\}, \ \vec{x} \in \mathbb{R}^{D} \qquad L_{S} = \{\vec{y}_{i}\}, \ y \in \{1, ..., L\},$$
$$D_{T} = \{\vec{u}_{i}\}, \ \vec{u} \in \mathbb{R}^{D}$$

 $\mu t = \mu s = 0$ after feature normalization while $C_S \neq C_T$.

$$\min_{A} \|C_{\hat{S}} - C_{T}\|_{F}^{2} = \min_{A} \|A^{\top} C_{S} A - C_{T}\|_{F}^{2}$$

$$\min_{A} \|C_{\hat{S}} - C_{T}\|_{F}^{2} = \min_{A} \|A^{\top} C_{S} A - C_{T}\|_{F}^{2}$$

Algorithm 1 CORAL for Unsupervised Domain Adaptation

Input: Source Data D_S , Target Data D_T Output: Adjusted Source Data D_s^* $C_S = cov(D_S) + eye(size(D_S, 2))$ $C_T = cov(D_T) + eye(size(D_T, 2))$ $D_S = D_S * C_S^{\frac{-1}{2}}$ % whitening source $D_S^* = D_S * C_T^{\frac{1}{2}}$ % re-coloring with target covariance

	A→C	A→D	$A \rightarrow W$	C→A	C→D	C→W	$D \rightarrow A$	D→C	$D \rightarrow W$	W→A	W→C	W→D	AVG
NA	35.8	33.1	24.9	43.7	39.4	30.0	26.4	27.1	56.4	32.3	25.7	78.9	37.8
SVMA	34.8	34.1	32.5	39.1	34.5	32.9	33.4	31.4	74.4	36.6	33.5	75.0	41.0
DAM	34.9	34.3	32.5	39.2	34.7	33.1	33.5	31.5	74.7	34.7	31.2	68.3	40.2
GFK	38.3	37.9	39.8	44.8	36.1	34.9	37.9	31.4	79.1	37.1	29.1	74.6	43.4
TCA	40.0	39.1	40.1	46.7	41.4	36.2	39.6	34.0	80.4	40.2	33.7	77.5	45.7
SA	39.9	38.8	39.6	46.1	39.4	38.9	42.0	35.0	82.3	39.3	31.8	77.9	45.9
CORAL	40.3	38.3	38.7	47.2	40.7	39.2	38.1	34.2	85.9	37.8	34.6	84.9	46.7

Table 1: Object recognition accuracies of all 12 domain shifts on the Office-Caltech10 dataset (Gong et al. 2012) with SURF features, following the protocol of (Gong et al. 2012; Fernando et al. 2013; Gopalan, Li, and Chellappa 2011; Kulis, Saenko, and Darrell 2011; Saenko et al. 2010).

	C→I	C→S	I→C	I→S	S→C	S→I	AVG
NA	66.1	21.9	73.8	22.4	24.6	22.4	38.5
SA	43.7	13.9	52.0	15.1	15.8	14.3	25.8
GFK	52	18.6	58.5	20.1	21.1	17.4	31.3
TCA	48.6	15.6	54.0	14.8	14.6	12.0	26.6
CORAL	66.2	22.9	74.7	25.4	26.9	25.2	40.2

Table 4: Object recognition accuracies of all 6 domain shifts on the Testbed Cross-Dataset (Tommasi and Tuytelaars 2014) dataset with DECAF-fc7 features, using the *"full training"* protocol.

THE CORAL+ ALGORITHM FOR UNSUPERVISED DOMAIN ADAPTATION OF PLDA

- Out of-domain (OOD) features to match the in-domain (InD)
- Probabilistic LDA

$$p(\phi|\mathbf{h}, \mathbf{x}) = \mathcal{N}(\phi|\mu, \mathbf{F}\mathbf{h} + \mathbf{G}\mathbf{x} + \Sigma) \qquad l(\phi_1, \phi_2) = \frac{p(\phi_1, \phi_2)}{p(\phi_1) p(\phi_2)}$$

while F and G are the speaker and channel loading matrices, and the diagonal matrix $\boldsymbol{\Sigma}$ models the residual variances

$$p(\phi) = \mathcal{N}(\phi | \mu, \Phi_{\rm b} + \Phi_{\rm w}) \qquad \begin{array}{l} \Phi_{\rm b} = \mathbf{F} \mathbf{F}^{\sf T} \\ \Phi_{\rm w} = \mathbf{G} \mathbf{G}^{\sf T} + \boldsymbol{\Sigma} \end{array}$$

$$\phi' = \mathbf{C}_{\mathrm{I}}^{\frac{1}{2}} \mathbf{C}_{\mathrm{o}}^{-\frac{1}{2}} \phi$$

$$\mathbf{C}_{\mathrm{o}}' = \mathbf{A}^{\mathsf{T}} \mathbf{C}_{\mathrm{o}} \mathbf{A} = \mathbf{A}^{\mathsf{T}} \mathbf{\Phi}_{\mathrm{w,o}} \mathbf{A} + \mathbf{A}^{\mathsf{T}} \mathbf{\Phi}_{\mathrm{b,o}} \mathbf{A}$$

• Model-level adaptation

$$\begin{split} \Phi_{\mathrm{b}}^{+} =& (1-\beta)\Phi_{\mathrm{b},\mathrm{o}} + \beta \mathbf{A}^{\mathsf{T}}\Phi_{\mathrm{b},\mathrm{o}}\mathbf{A} \\ \Phi_{\mathrm{w}}^{+} =& (1-\gamma)\Phi_{\mathrm{w},\mathrm{o}} + \gamma \mathbf{A}^{\mathsf{T}}\Phi_{\mathrm{w},\mathrm{o}}\mathbf{A} \end{split} \longrightarrow \begin{array}{c} \Phi_{\mathrm{b}}^{+} =& \Phi_{\mathrm{b},\mathrm{o}} + \beta \mathbf{B}_{\mathrm{b}}^{-\mathsf{T}}\left(\mathbf{E}_{\mathrm{b}} - \mathbf{I}\right)\mathbf{B}_{\mathrm{b}}^{-1} \\ \Phi_{\mathrm{w}}^{+} =& \Phi_{\mathrm{w},\mathrm{o}} + \gamma \mathbf{B}_{\mathrm{w}}^{-\mathsf{T}}\left(\mathbf{E}_{\mathrm{w}} - \mathbf{I}\right)\mathbf{B}_{\mathrm{w}}^{-1} \end{split}$$

Algorithm 1: The CORAL+ algorithm for unsupervised adaptation of PLDA.

Input	Out-of-domain PLDA matrices $\{ \Phi_{w,o}, \Phi_{b,o} \}$ In-domain data X_{InD} Adaptation hyper-parameters $\{\gamma, \beta\}$							
Output	Adapted covariance matrices $\{ \Phi_w^+, \Phi_b^+ \}$							
Estimate er C _I = C	npirical covariance matrix from in-domain data $X_{ m InD}$ ov $(X_{ m InD})$							
Compute of C _o = 4	ut-of-domain covariance matrix $\mathbf{P}_{w,o} + \mathbf{\Phi}_{b,o}$							
for each Φ	in $\left\{ \Phi_{\mathrm{w,o}}, \Phi_{\mathrm{b,o}} ight\}$ do							
Com	Compute Pseudo In-domain covariance matrix $\mathbf{S} = \mathbf{C}_{\mathrm{I}}^{1/2} \mathbf{C}_{\mathrm{o}}^{-1/2} \mathbf{\Phi} \mathbf{C}_{\mathrm{o}}^{-1/2} \mathbf{C}_{\mathrm{I}}^{1/2}$							
Find and	{ B , E } via simultaneous diagonalization of Φ { Q , Λ } \leftarrow EvD(Φ) { P , E } \leftarrow EvD($\Lambda^{-1/2} Q^T S Q \Lambda^{-1/2}$) B = $Q \Lambda^{-1/2} P$							
Regularized adaptation of PLDA, $\alpha \in \{\gamma, \beta\}$ $\Phi^+ = \Phi + \alpha B^{-T} \max(0, E - I)B^{-1}$								
Notation EVD(.) returns a matrix of eigenvectors and the corresponding eigenvalues in a diagonal matrix.								

Table 1. Performance comparison on SRE'16 (CMN). The dimension of x-vector after LDA is 150 and 200. Boldface denotes the best performance for each column.

	LDA	150	LDA 200		
	EER (%)	MinCost	EER (%)	MinCost	
OOD PLDA	9.69	0.783	9.94	0.813	
Kaldi PLDA	6.82	0.552	6.57	0.558	
CORAL PLDA	6.50	0.539	6.31	0.543	
CORAL+ PLDA	6.62	0.540	6.30	0.553	
w/o reg	6.93	0.544	6.51	0.547	

Table 2. Performance comparison on SRE'18 (CMN2). The dimension of x-vector after LDA is 150 and 200. Boldface denotes the best performance for each column.

	LDA	150	LDA 200		
	EER (%)	MinCost	EER (%)	MinCost	
OOD PLDA	7.19	0.538	7.47	0.569	
Kaldi PLDA	6.25	0.435	6.48	0.466	
CORAL PLDA	6.22	0.449	6.42	0.482	
CORAL+ PLDA	5.95	0.421	5.80	0.438	
w/o reg	6.49	0.441	6.33	0.460	

DOMAIN ADAPTATION FOR SPEAKER RECOGNITION IN SINGING AND SPOKEN VOICE

- Motivation
 - methods based on neutral spoken voice suffer performance degradation with varying speaker style and effort
 - the performance degradation on spoken voice accompanied by the modest increase in performance on singing voice indicates fine-tuning as a sub-optimal solution

- The increase in the sound range
- Deviation of F1 and F2 resonants

Fig. 3: Histogram plots of the first three formants (F1-F3) of spoken and singing speech from the JukeBox-V2 dataset

• 1D-CNN framework

Fig. 1: A visual representation of the domain-adaptation-based 1D- CNN framework proposed in Section 3.

Triplet Loss:
$$L(S_a, S_p, S_n) = \sum_{a, p, n}^{N} \cos(g(S_a), g(S_n)) - \cos(g(S_a), g(S_p)) + \alpha_{margin}$$

DA loss:

$$L_{DA}(g(x_{si}), g(x_{sp})) = \frac{1}{4d^2} \left\| (C_{si} - C_{sp}) \right\|_F^2 \qquad \| \cdot \|_F^2 \text{ is the squared matrix Frobenius norm}$$

 $L = \alpha_1 L_{si} + \alpha_2 L_{sp} + \beta L_{DA}$

Fig. 4: t-SNE plots of the speech embeddings (with and without DA) of singing and spoken voice from the JukeBox-V2 dataset. The circles were added to indicate the apparent cluster boundaries. After DA, the apparent domain gap is reduced leading to overlap of the circle as shown in the lower row. The without DA methods refer to the baseline models.

Fig. 2: Summary of verification performance (Top: TMR@FMR=1%, Bottom: EER (in%)) across different evaluation conditions. Note the increase in *singer* recognition performance in both fine-tuned (orange bars) and domain adapted (grey bars) models and increase in speaker recognition performance in domain adaptation over fine-tuning.