Lasso-based Reverberation Suppression In Automatic Speech Recognition

Xuewei Zhang, Yiye Lin, Dong Wang Center for Speech and Language Technologies (CSLT) Tsinghua University

Overview

- Far-field automatic speech recognition(ASR) is challenging
- Lasso is a novel linear sparse prediction model which estimates the late reflection
- We apply three Lasso-based de-reverberation approaches to far-field speech recognition based on deep neural networks

Far field signal

$$x[t]=s[t]*(r_e[t]+r_f[t])+n[t]$$

 $\succ x[t]$: the received reverberated signal

 $\gt s[t]$: the direct signal

> n[t]: the background noise

 $r_e[t]$: the early room impulse response

 $\succ r_f[t]$: the late room impulse response

Reverberated signal

$$X_{k,n} = S_{k,n} + \sum_{i=0}^{l-1} \beta_{k,n,i} X_{k,n-i} + \sum_{l=0}^{l-1} \alpha_{k,n,l} X_{k,n-\delta-l}$$

- $\succ S_{k,n}$ follows a zero-mean Gaussian distribution
- $\geq \{\alpha_{k,n,i}\}$, $\{\beta_{k,n,i}\}$ represent the model parameters
- > I represents the maximum delay of the early reflection
- > L represents the maximum delay of the late reflection

The sparse linear prediction model

$$\min_{\{\alpha_{k,n,l}\}} \left| x_{k,n} - \sum_{l=0}^{L-1} \alpha_{k,n,l} x_{k,n-\delta-l} \right|^2$$

$$s. t \sum_{l=0}^{L-1} \left| \alpha_{k,n,l} \right| \leq \lambda$$

 $> \lambda$: a regularization parameter

 Reverberated speech signal and the Lasso-based dereverberation signal

(a) reverberated signal

(b) dereverberated signal

- ➤ Although promising in perceptual experiments, it is unknown if the Lasso-based dereverberation can improve far-field ASR
- \triangleright Inferring the regression coefficients $\alpha_{k,n,l}$ for each frame and each frequency channel involves very demanding computation

- FBank element-based Lasso
- > the Mel channels are independent
- ➤ FBank-based Lasso is easily integrated in the frontend pipeline of the ASR system

FBank frame-based

$$\min_{\{\alpha_{n,l}\}} ||x_n - \sum_{l=0}^{L-1} \alpha_{n,l} x_{n-\delta-l}||^2$$

$$s. t \sum_{l=0}^{L-1} |\alpha_{n,l}| \le \lambda$$

- The late reflection contributes to all channels in the same way, so that the regression coefficients can be shared
- **▶** || || :the Frobenius norm

FBank utterance-based Lasso

$$\min_{\{\alpha_l\}} ||x_n - \sum_{l=0}^{L-1} \alpha_l x_{n-\delta-l}||^2$$

$$s. t \sum_{l=0}^{L-1} |\alpha_l| \leq \lambda$$

- ➤ Reducing computation cost in the frontend of ASR systems
- Considering that in a stationary environment where the locations of the speaker and the microphone are both unchanged, the regression coefficients should be shared among all the frames

- Experimental settings
- ➤ The wsj dev93 dataset (503 utterances) and eval92 dataset (333 utterances) were used to conduct the development set and evaluation set
- > Two approaches were used to generate the reverberated version
- > using the Kaldi
- > 40-dimensional Fbanks feature
- ➤ The DNN architecture involves 4 hidden layers and each layer consists of 1200 units. The output layer is composed of 3447 units
- ➤ Mini batch size is set to 256 frames
- > The learning rate started from a relatively large value 0.008

Estimate λ

- \triangleright Using element-based, frame-based and utterance-based methods, the corresponding optimal λ is 0.17, 0.15 and 0.14.
- ➤ The computation speed of Lasso based on utterance is twice faster than that of the other two methods
- The utterance-based method is particularly suitable for real-time ASR.

Results on simulated data

In any case (Xent and MPEs), the Lasso-based dereverberation delivers clear performance improvement compared to the baseline results

> The element-based method is slightly better

Results on real reverberated data

> We can draw similar conclusions as with the simulated data

Conclusions

- ➤ This paper experimented with a Lasso-based dereverberation approach in DNN-based speech recognition
- ➤ The new de-reverberation approach can deliver significant performance improvement on both simulated and real reverberated speech data
- > The utterance-based method is much faster than the element and frame-based methods, so it is suitable to be applied to real-time ASR