Memoryless Document Vector

Dongxu Zhang

Advised by Dong Wang

2016.1.18

- What is "Memory"?
- Why do we want "Memoryless"?
- How to achieve that goal?

- What is "Memory"?
 - Latent Semantic Indexing(LSI) [1]

$$X = TSD^{T} \to d = xTS^{-1}$$

• Probabilistic Latent Semantic Indexing(PLSI)[2]

$$P(w_j|d_i) = \sum_{k=1}^{K} P(w_j|z_k) P(z_k|d_i)$$

• Paragraph Vector with Distributed Bag of Words(PV-DBOW)[3]

• Why "Memoryless"?

- How to achieve?
 - Word vector pooling[4]
 - Shortcoming: Does not involve pooling in model training, which leads to mismatch between word vector learning and document vector producing.
 - Memoryless Document Vector

Memoryless Document Vector

$$v^{(d)} = (\sum_{i \in L^{(d)}} W_{d_i}) / L^{(d)}$$

$$\mathcal{L}(D; W) = \sum_{d \in D} \sum_{i \in L^{(d)}} -\log \mathcal{P}(d_i | v^{(d)})$$

Experiments

- Datasets
 - Webkb, reuters 8, 20 newsgroup
 - SST, IMDB
- Setup
 - Topic classification tasks with 50 and 200 dimensions.
 - Sentiment classification tasks with 100 and 400 dimensions.
 - Logistic regression classifier.

Results

Accuracy	R 8		20ng		Webkb		SST		IMDB	
	50	200	50	200	50	200	100	400	100	400
LSI	96.4	97.2	75.3	78.1	87.1	90.3	36.1	39.5	86.0	87.3
LDA	94.1	94.5	67.8	73.2	82.0	86.5	30.3	29.8	83.6	83.6
DocNADE	95.3	96.4	72.6	76.2	84.4	86.9	22.6	22.6	86.2	87.2
Skip-gram Pooling	96.3	96.5	75.4	78.1	86.4	86.8	37.1	38.7	86.6	86.7
PV-DBOW(our imp.)	96.1	95.3	75.2	76.2	89.6	90.0	34.0	36.8	82.9	85.8
MLDV	96.5	96.8	75.7	78.1	89.4	90.2	37.4	38.3	87.8	87.5
+initialization	96.0	96.7	76.5	79.2	89.3	90.7	37.6	39.9	88.0	88.2

Conclusion

Raise up the memory issue of conventional document representation methods and then propose a simple yet effective method for document representation to nail it.

Reference

- [1] S.C. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, and R.A. Harshman. 1990. Indexing by latent semantic analysis. Journal of the American Society of Information Science, 41(6):391–407.
- [2] Hofmann, Thomas. "Probabilistic latent semantic indexing." *Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval*. ACM, 1999.
- [3] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages 1188–1196.
- [4] Chao Xing, Dong Wang, Xuewei Zhang, and Chao Liu. 2014. Document classification based on i-vector distributions. In APSIPA 2014.

Thank you.