Step of Decoding-graph Creation on
Test Time by Kaldi Toolkit

e STEP 1 Preparing the initial symbol table words.txt
and phones.txt

(1)words.txt contains & “#0”

(2)phones.txt doesn’t contain ¢,but after create L.fst, &
in phones_disambig.txt

e STEP 2 Preparing the lexicon L

(1)Lexicon will be used to create L.fst which used in
training(No disambiguation symbols);lexcion created
with disambiguation symbols used in decoding-graph
creation

(2)Convert the lexicon without disambiguation symbols
into an FST.

gcripta/make lexicon fat.pl data/lexicon.txt 0.3 S5IL |
fatcompile —iayvmbola=data/phonea.tixt ——oayombola=data/words.txt
—keep isymbols=false —-keep oaymbols=falae | \
fatarcsort ——sort type=olabel » data/L.fst

The output of silence with probability 0.5

(3)Structure of lexicon

Final: one state(“loop state”)

Start:two transition to loop(silence & no silence)

Loop state:input —the first phone of a word
output—the word

(4)Create lexicon with disambiguation symbols

Add self-loops to the lexicon so disambiguation
symbols #0 from G.fst can be passed through the
lexicon.

Two ways: program fstaddselfloops
script make_lexicon_fst.pl

phone disambig symbol="grep \#0 data/phone3 disambig.txt | awk '"{print &2}"’
word disambig symbol="grep \#0 data/words.txt | awk '{print &2}"°

acripts/make lexicon fat.pl data/lexicon disambig.txt 0.5 5IL | 3%
fatcompile --isymbols=date/phones disambig.txt --ocsymbols=data/words.txt)\
—keep isymbols=false --keep o3dymbola=false | \
fataddselfloops "echo Sphone disambig aymbol |" "echo fword disambig symbol |7 | \
fatarcsort --sort type=oclebel » date/L disembig.fst

STEP 3 Preparing the grammar G

The grammar G is for the most part an acceptor (i.e.
input and output symbols are identical on each arc) with
words as its symbols.

Exception--the disambiguation symbol #0 only appears
on the input side

steps running arpa2fst:
remove the embedded symbols from the FST

make sure there are no out-of-vocabulary words in the
language model

remove "illegal" sequences of the start and end-of-
sentence symbols

replace epsilons on the input side with the special
disambiguation symbol #0.

e STEP 4 Preparing LG

fattablecompose date/L disambig.fat dataf/G.fat |
fatdeterminizesatar —--use-log=true | %
fatminimizeencoded > somedir/LG.fat

(1) composing L with G
(2)remove ¢

(3)minimization: the same as minimization algorithm
that applies to weighted acceptors; the only change
relevant here is that it avoids pushing weights, hence
preserving stochasticity

e STEP 5 Preparing CLG
Prepare an FST called CLG to get a transducer whose
inputs are context-dependent phones.

(1)Making the context transducer.

The basic structure of C is that it has states for all
possible phone windows of size N-1.

Beginning of utterance

Suppose: state <eps>/<eps> output symbol a
so the input is <eps>/<eps>/a

when P=1,the central element is <eps>

so, let input of arc be #-1

End of utterance :The context FST has, on the right (its
output side), a special symbol S that occurs at the
end of utterances.

e.g. a/b/<eps> <eps>represents undefined context

Natural way: have a transition with
input a/b/<eps>
output <eps>

from state a/b to final state.

Instead:(1) use S as the end-of-utterance symbol

(2) make sure it appears once at the end of each
path in LG

(3) replace <eps> with S on the output of C and
the number of repetitions of S is equal to N-P-1.

Achieved by: function AddSubsequentialloop()

program fstaddsubsequentialloop

If we wanted C on its own, need:
(1)a list of disambiguation symbols;

(2)work out an unused symbol id use for the
subsequential symbol

We could then create C with the following command

fatmakecontextist --read-disambig-svms=:dir/disambig phones.list
--Write-disambig-sym3=fdir/disambig 1labels.list data/phones.txt £3ubseq sym \
tdir/ilabels | fatarcsort --sort type=plabel > &dir/C.fat

Need: a list of phones;
a list of disambiguation symbols;
id of the subsequential symbols.

(2)Composing with C dynamically-- use program
fstcomposecontext

f3tcomposecontext --read-disambig-ayms=tdir/disamblg phones.list b
--Write-disambig-ayma=5dir/disambig ilabels.list
tdirfilebels < &dir/LG.fat >&dir/CLG.fat

(3) Reducing the number of context-dependent input
symbols.

After creating CLG.fst, there is an optional graph creation
stage that can reduce its size. Use program make-ilable-
transducer and output a new ilable_info(5%-20% reduction).

e STEP 6 Making the H transducer

H:input transition-id(encodes the pdf-id plus some
other information including the phone).

output context-dependent phones
Script that makes the H transducer

make-h-tranaducer --disamblg-3yma-cut=5dir/disamblg tatate.list
--transition-scale=l.0 &dir/ilabels.remapped \
stree Smodel > sdir/Ha.fst

Called Ha.fst because it lacks self-loops.

e STEP 7 Make the HCLG that lacks self-loops.

fattablecompoae Sdir/Ha.fat £dir/CLG2.Tat |

fatdeterminizeatar —use-log=true | %
fatrmaymbols Fdir/disambig tatate.list |
fatrmepslocal | fatminimizeencoded > Sdir/HCILGa.fst

e STEP 8 Adding self-loops to HCLG

add-self-locops —selfi-loop—acale=0.1 \
—-—regrder=true smodel « £dir/HCLGa.fst > &dir/HCLG.f3t

The self-loop scale is the scale that we apply to the
self-loops add a self-loop with log-probability self-loop-
scale * log(p), and add (self-loop-scale * log(1-p)) to all
the other log transition probabilities out of that state

