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How to use condition

* Joint probability density

* Condition In (change the net directly)
* Condition out (change the net via BP)
* Some typical types
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Figure 2: One conditional affine coupling block (CC).
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Figure 5: cINN model for conditional MNIST generation.
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Figure 6: MNIST samples from our cINN conditioned
on digit labels. All ten digits within one row (0,...,9)
were generated using the same latent code z, but changing
condition c. We see that each z encodes a single style
consistently across digits, while varying z between rows
leads to strong differences in writing style.
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Figure 7: To perform style transfer, we determine the
latent code z = f(x;c,8) of a validation image (left),
then use the inverse network ¢ = f~! with different
conditions ¢ to generate the other digits in the same style,
% = g(z;¢,0).

Guided image generation with conditional invertible neural networks
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Class-conditional (to f, via pretrained model)
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Figure 8: cINN model for diverse colorization. The conditioning network h consists of a truncated VGG [37] pretrained
to predict colors on ImageNet, with separate convolutional heads h, ho, h3, ... tailoring the extracted features to each
individual conditional coupling block (CC). After each group of coupling blocks, we apply Haar wavelet downsampling
(Fig. 3) to reduce the spatial dimensions and, where indicated by arrows, split off parts of the latent code z early.

VGG-like (discriminative) A is pretrained to classify each pixel of the gray image into color bins, then fixed.

Guided image generation with conditional invertible neural networks
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Conditional adversarial generative flow (to z)
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(a) Inferred (b) Sampled
Figure 1. Barnes-Hut -SNE [40)] visualization of 6, 000 latent vec-

tors on 200 identities of CGlow [ ! 7]. (a) latent vectors inferred by
forward CGlow; (b) randomly sampled latent vectors by inverse
CGlow. Best viewed in color.

The clusters of sampled latent vectors keep far apart and have a large divergence from the real distribution.
The underlying distribution of image conditions is difficult to measure precisely on the latent space.

Conditional Adversarial Generative Flow for Controllable Image Synthesis, CVPR
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Conditional adversarial generative flow (to z)

dF
log p(z,cs) = logp(z, cs) + log detd—, (4)

xZ

where we let ¢, denote the conditions under supervision.
Using Bayesian formula, maximizing equation 4 is equal
to:

max Ez,\,p*(z),csf\ap(cs)[logp((:s"z)]
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where the prior p*(z) is modeled by a standard Gaussian
distribution.
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Conditional adversarial generatwe flow (to z)
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(a) The training procedure of CAGlow (b) The image synthesis process of CAGlow

Figure 2. Illustration of the network architecture of the proposed conditional adversarial generative flow. It contains a reversible flow F,
an encoder F, and a supervision block including a discriminator D; distinguishing real vectors from fake ones, a classifier C' classifying
supervised conditions correctly and a decoder D, reconstructing unsupervised conditions.

How to choose a better z.
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Conditional adversarial generative flow (to z)
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Conditional continuous normalizing
(condition out)

J = Lner(X|y) + BLxen (F,y), (4)
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Figure 1: InfoCNF with CNN gates that learn the tolerances of the ODE solvers using reinforcement learning.
The latent code in InfoCNF is split into the supervised and unsupervised codes. The supervised code is used for
conditioning and classification. The unsupervised code captures other latent variations in the data.

InNfOCNF: An efficient conditional continuous normalizing flow with adaptive solvers
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Figure 1. The proposed semi-conditional architecture consists of
two parts: a large unconditional flow f,, (z), and a relatively small
conditional flow k(2 ¢;y). The unconditional flow f,, () is based
on a multi-scale architecture and maps an input z into a low-
dimensional zy and an auxiliary vector z,,x. The conditional flow
he(2;y) maps the low-dimensional vector z¢ to zp, = hg (253 y).
The architecture allows to compute po(z) = Eypo(x,y) with a
single forward pass of the computationally expensive flow fy and
one pass of the inexpensive flow A for every class label y.

Semi-Conditional Normalizing Flows for Semi-Supervised Learning
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Conditional Normalizing Flows (to z & 1)
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Figure 1: Diagram of our model in the
train and sampling phases. Solid lines
represent deterministic mappings and
dashed lines represent sampling. The
conditioning variable enters the net-
work in base density p(z|x) and the bi-

Jective mappings f(y,x).

| earning Likelihoods with Conditional Normalizing Flows
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Conditional recurrent flow (recurrent)
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Figure 3: The CRow model. Only the forward map of a single block (two
coupling layers) is shown for brevity. The inverse map involves a similar
order of operations (analogous to Fig. 2a and Fig. 2b)

Conditional recurrent flow: conditional generation of longitudinal samples with applications to neuroimaging
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