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Abstract

Algorithmic trading is a hot topic in machine learning. Compared to other
methods, reinforcement learning (RL), particularly Q-learning, can learn decision
rules directly with reasonable reward, and therefore is suitable for learning trading
strategies. Recently, Q-learning based on deep neural models, also known as deep
Q-learning, has been successfully applied to some challenging tasks like game
playing and robot motion. In this paper, we propose to employ deep Q-learning
to build an end-to-end deep Q-trading system which can automatically determine
what position to hold at each trading time. Our experimental results show that
the deep Q-trading system can outperform the buy-and-hold strategy as well as
the strategy learned by recurrent reinforcement learning (RRL) that was known
to be more effective than Q-learning.
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1 INTRODUCTION

Algorithmic trading for stocks is attractive for both researchers and market prac-
titioners. Existing approaches for algorithmic trading can be categorized into
knowledge-based methods and machine learning (ML) based methods. Knowledge-
based methods design trading strategies based on either financial research or trading
experience; ML-based methods, in contrast, learn trading strategies from the mar-
ket data in history. An obvious advantage of the ML-based methods is that they
can discover profitable patterns that are yet unknown to people. Refer to the review
paper [1] for more details about algorithmic trading.

Among various ML methods, reinforcement learning (RL) is particularly inter-
esting, especially the Q-learning approach. First, Q-learning does not model the
market, instead of focusing on the benefit (Q value) associated with actions. This
avoids the errors caused by any market model. Second, Q-learning is suitable to
do online learning, which enables quick adaptation to new market status. Third,
Q-learning pays attention to long-term benefit rather than instantaneous reward,
which is congruent with the goal of stock trading, maximizing long-term profit. Cur-
rently, reinforcement learning has been applied in financial analysis and investment
by a multitude of researchers. For instance, Moody et al. [2] proposed a recurrent re-
inforcement learning (RRL) algorithm to optimize security portfolios. Gao et al. [3]
used the relative risk-adjusted profit (sharp ratio) as performance function to train
the trading system based on Q-learning. Du et al. [4] compared the performance of
Q-learning and RRL, and reported that RRL achieved better performance in stock
trading. Lee et al. [5] proposed an approach that incorporates multiple Q-learning

agents to perform pricing and selection for stocks.
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Recently, deep learning [6] has achieved remarkable success in a wide range of
research areas, including speech processing, image processing, and natural language
processing [7]. An important advantage of deep learning is that it can learn high-
level features from raw signals layer by layer. Deep learning has been combined with
the Q-learning recently, leading to a powerful deep Q-learning method. In a netshell,
deep Q-learning is a Q-learning with a deep model (e.g., deep neural network) to
identify status. Deep Q-learning has shown great power in a multitude of tasks.
For example, it has been utilized to learn to play Atari games and the GO game,
which achieved very impressive performance [8, 9]. To the authors’ best knowledge,
this powerful approach has not been applied to stock trading tasks, although deep
models are supposed to be useful to discover market status from the noisy raw data.

In this paper, we apply the deep Q-learning approach to algorithmic trading. Our
goal is to build a deep Q-trading system that determines when to buy and sell,
based on the current and historical market data. Our preliminary experiments on
the Hong Kong and US stock markets demonstrate that the deep Q-trading system
is highly effective.

The paper is organized as follows: Section 2 describes the deep Q-learning ap-
proach. Section 3 presents the implementation details of the deep Q-trading system.
Section 4 reports the experimental results, and Section 5 concludes the paper and
discusses the future work.

2 DEEP Q-Learning

This section first briefly introduces the Q-learning algorithm and its application to
stock trading, and then extends to the deep Q-learning approach.

2.1 Q-learning
Reinforcement learning is a general framework to deal with sequential decision tasks.
At each time step ¢, RL observes the status s; of the environment, takes an action
a¢, and receives some reward r; from the environment. With sufficient pairs of
(action,reward), RL can learn an optimal decision policy 7* that maximizes the
long-term accumulated reward ), 7.

Formally, Q-learning learns a value function Q(s, a) that represents the expected
accumulated reward when taking an action a when the environment status is s.
This is formulated as follows:

Qr(s,a) = E[Ry|st = s,a; = a, 7], (1)
where 7 is the decision policy, and R, is the accumulated reward given by:

Ry =Y 7"y, (2)
t

where v < 1.0 is a discount factor to weight future reward. The goal of the learning
is to find the best policy 7* that maximizes the expected return. The corresponding

optimal Q-function is given by:
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Q*(57 CL) = maz,Qx (37 CL). (3)

The Q-function holds a nice property formulated as the Bellman equation:

Q*(s.) = i+ ymaxQ(s', ) (4)

where s’ is the new status after taking action a under status s. The main idea behind
the Q-learning is that we can iteratively approximate the Q-function at each (s, a)
using the Bellman equation, and this iterative update will converge to the optimal
Q-function Q*(s,a).

2.2 Q-learning with deep neural networks

In the case of continuous state s, a neural network is often used to approximate the
value Q(s,a). This network is often referred as a Q-network [10]. The Q-network
can be trained by minimizing the QQ prediction error, i.e., the difference between the
left-hand and right-hand side of Eq. (4). The loss function is formulated as follows:

L(0;) = E(s,0)mp() [(y — Q(s, 05 6:))7], (5)

where i denotes the training iteration, 6 denotes the parameters of the Q-network.
The training examples are in the form of (s,a,r,s’), and p(s,a) denotes the distri-
bution of the training examples. Additionally, y is the prediction of Q(s,a) given
by the Bellman equation:

y=r-+ymaxQ*(s’,a’;0;_1)|s,a. (6)
al
Note that y; is computed with 6;_1, the weight of the previous iteration. This loss

function can be minimized by the stochastic gradient descend (SGD) algorithm.
The gradient with respect to 6 is given by:

Vo, L(0;) = Es aymp(y [(r +7 max Q*(s',a';0;_1)

= Q(s,a;0;)) Vo, Q(s,a;0;)]

(7)

where Vg, Q(s, a; 6;) can be easily computed by the back-propagate (BP) algorithm.

If the Q-network involves multiple layers, we obtain the deep Q-learning architec-
ture. It has been well-known that deep learning is capable of learning hierarchical
patterns, and the patterns learned by the high-level layers tend to be abstract and
invariant against unexpected disturb. This abstraction and invariance is essentially
important for stock trading. In stock markets, there is vast raw and noisy informa-

tion (e.g., price, volume, correlation and auto-correlation among securities, special
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events of enterprises, macro economic indicators,...). This information forms the
status of the market, but it is fairly challenging to identify the market status from
these noisy information. With deep Q-learning, abstract and robust market pat-
terns can be extracted from the vast, noisy and heterogenous information. These
patterns form a much better representation for the market status s than the raw
input features. As a summary, deep Q-learning involves a deep learning component
that learns the market status s, and a Q-learning component that learns the value
function Q(s,a), although these two components are integrated as an entire deep

Q-network in the real implementation.

3 Deep Q-trading system

In this section, we use the deep Q-learning algorithm to build an end-to-end al-
gorithmic trading system. We consider a simple trading task that operates on a
single security, and at each trading day ¢, only one operation (action) is allowed.
The action a; has three options: long (1), neutral (0) or short (—1), and a reward
r4 is obtained. Our task is to learn a deep Q-function Q(s,a) that maximizes the
long-term accumulated profit >, Wt/_tr,y. No transaction cost is considered in this
study. This trading approach based on the deep Q-learning algorithm is referred to
as deep Q-trading.

In principle, the learning can be conducted by minimizing the loss function in Eq.
(5) with SGD or any other gradient-based method, with the gradient given by Eq.
(7). In practice, however, several issues need to be addressed before the learning can
be successful. Firstly, since only one action is taken at each trading day, the total
training data is quite limited; secondly, the Q-learning is intrinsically unstable [8];
thirdly, an online learning is required so that the Q-function can be quickly adapted
to new status of the market. We describe some implementation details of our deep

Q-trading system in what follows.

3.1 Online learning

A particular reason why many supervised learning approaches failed in stock market
prediction and algorithmic trading is that the market is very volatile. This volatility
is not only caused by short-term noise, e.g., unexpected events, but also by the in-
trinsic evolution of the market fundamentals, such as economic growth, technology
development, population structure, etc. This means any models trained with histor-
ical data, no matter how accurate they are on the training set, will ultimately fail
in new market conditions. An online learning approach that can quickly adapt the
model to new market conditions is therefore essentially important for a practical
trading system.

Fortunately, it is easy to implement an online version of the deep Q-trading sys-
tem. We first train an initial deep Q-network using a small historical data, and then
re-run the deep Q-learning from the beginning. At each trading day, a new training
example (8¢,at,7¢,5¢+1) is added to a buffer that consists of recent trading history.
The examples in the buffer are then used as a mini-batch to update the Q-network
following Eq. (7).
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3.2 Update scheme

It is well-known that Q-learning is unstable, particularly with deep neural network-
s. One reason is that a small change on the Q-network may change the Q-value
significantly, hence change the decision policy as well. This is because that both
the present @ value Q(s,a) and estimated Q value y = r + ymax, Q*(s',a’) are
computed by a single Q-network.

We design two approaches to mitigate this problem. First, notice that only three
actions are allowed to be chosen in the trading task, and after each trading day, the
reward associated with each action is actually known. This means that we don’t
need a random exploration to sample an action as in many reinforcement learning
tasks [8]; instead we can emulate all the three actions to update the Q-network.
This not only enriches the training data, but makes the training more stable.

Another method is to use a separate target network Q to compute the estimated
Q value y, as suggested by Mnih [8]. The gradient in Eq. (7) is then changed to:

vﬁle(az) = IE:s,awp(~) [(T + max Q(sla al§ é)

- Q(57 a; ei))veiQ(s7a; 91)]

(®)

The target network Q is updated by interpolating with the latest Q, as follows:
0+ 70+(1—1)0 (9)

where 7 is the interpolation factor. Note that the decision of the trading is made
based on the target network Q, rather then the present network Q.

3.3 Reward function
Reward function is another key ingredient of the deep Q-trading system. Most of
previous researches on ML-based methods often use instantaneous reward such as
daily profit, either in an additive form r, = 2; — 2;_1 or in a productive form
ry = 2z¢/z1—1 — 1, where z; is the price of the target equity at the ¢-th day. This
instantaneous reward, however, is not suitable for deep Q-learning, as the instanta-
neous reward is quite noisy so it can not provide reliable supervision for the model
training. Furthermore this reward is not consistent with our goal of maximizing
long-term profit!!l. We experimented with several long-term reward functions and
found that the accumulated wealth over n days in the past was a good candidate
for deep Q-trading. Formally, the reward is given by

r=(1+ sgn(at)w) ol ) (10)

Zt—1 Zt—m

where a; € {—1,0,1} and sgn(-) is the sign function.

Q-learning indeed targets for a long-term reward. Specifically, it relies on the
Bellman equation to accumulate a series of discounted instantaneous reward to a
long-term reward. However, the factorization assumption is fair strong and may not
hold in practical usage.
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4 EXPERIMENTS

The proposed deep Q-trading system is evaluated on two stock markets: Hong Kong
and US, and choose HSI and S&P500 as the trading target. we first describe the data
and configurations of the experiment, and then present the performance results.

4.1 Data and settings

The database used in the experiment involves 15 years of daily data of HSI
and S&P500 downloaded from Yahoo finance, ranging from 01/01/2001 through
12/31/2015. This database is divided into a training data set (01/01/2001 -
12/31/2004) and a test set (01/01/2005 - 12/31/2015). Only the daily closing price
is used in this study, though other features can be easily incorporated into the model
and are under investigation.

We compare the deep Q-trading system with two baselines: the buy-and-hold
(BH) strategy and the recurrent reinforcement learning (RRL) system [2, 11]. For
deep Q-trading, the training dataset is used to initialize the deep Q-network, and
then the system runs in an online fashion where trading decision making and model
adaptation are conducted simultaneously. For the Q-learning part, the discount
factor in Eq. (7) is set to v = 0.85, and the reward window n in Eq. (10) is set
to 100. For the deep-learning part, the architecture of the deep Q-network involves
four layers in total (two are hidden), with the number of units set to 200, 100, 50 and
3 respectively. The input units (features) are composed by the delta price z; — z;—1
of 200 days in the past, and the output units correspond to the three actions in
trading. The learning rate for Q-network is le — 4, and the training stops after 10
iterations. The interpolation factor 7 in Eq. (9) is set to 0.0003, and the minibatch
involves the training examples of the past 64 days. Note that the training examples
involve all the 3 actions and their rewards at each trading day, so the minibatch
size is actually 192.

As for the RRL system, the code provided by Yupu Song and Kartik Shetty is
used to build the system!?. Note that the original setting of the RRL system is
based on monthly prices. For a fair comparison, we migrate the algorithm to daily
prices. The input features are delta prices of the past 120 days, and the learning
rate is set to 0.005. The maximum training epoch is set to 100. These parameters
have been chosen to optimize and balance the performance of the RRL system on
both of the two data sets (HSI and S&P 500). The RRL system is trained offline
with the training data and then applied to the test data without any adaptation.

4.2 Experimental results

The results with the three trading approaches (BH, RRL, and deep Q-trading) on
the HSI test set are presented in Fig. 1, and the results on the S&P500 test set
are presented on Fig. 2. In each figure, the top plot reports the performance in
terms of accumulated wealth (starting from the initial wealth 1.0), and the bottom
plot presents the positions held by the deep Q-trading system. It can be seen that
on both of the two test sets, the deep Q-trading system accumulates clearly more

wealth than the other two systems. More detailed numerical comparison is shown

Thttps://github.com/MagicEthan/CS534_AI_Proj
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HSI S&P500
BH [ DQT [ RRL | BH | DQT | RRL
Accumulated
Return(%) 154 | 350 174 | 169 | 214 141
Sharp Ratio 0.28 | 0.59 | 0.89 | 0.34 | 045 | 1.23
Maximum
Drawdown(%) 65 42 55 57 31 43

Table 1 Comparison of trading performance

in Table 1, where we report three widely used measures for stock trading: accumu-
lated return, sharp ratio and maximum drawdown. It can be seen that our trading
system outperforms the other two methods in terms of total return and maximum
drawdown, but performs worse than the the RRL system in terms of sharp ratio.
This is not surprising because the RRL system uses sharp ratio as its reward signal.

Comparing deep Q-trading and RRL, it seems that the former performs more
consistently than the later: deep Q-trading performs well on both the two markets,
while RRL performs poorly on S&P500. This advantage of deep Q-trading can be
attributed to two advantages. One of them is the ability to detect the status of the
market from the raw and noisy data. And the another is the online nature that
adapts itself to new market status quickly. More interesting observations can be
found in the two position plots. From the positions held by the Q-trading system, it
seems that it has learned how to take different actions in different market situations.
For example, in a downside market, it learns selling is more profitable than holding,
and thus tends to hold a short position. This sensitivity against market status can
be largely attributed to the power of the deep Q-network in discovering the status

of the market from the vast and noisy historical price signals.

1500 2000 2500 3000
days

500 1000 1500 2000 2500 3000
days

Figure 1 The performance of various trading strategies on HSI. The top plot shows the
performance on the test set, evaluated in terms of accumulated wealth. The bottom plot shows

the position held by the deep Q-trading system.

5 CONCLUSION

In this paper we propose a novel deep Q-trading method that applies the deep Q-
learning approach to algorithmic trading. Compared to existing methods, deep Q-
trading is able to detect market status from raw and noisy data, and pays attention

to long-term returns. Our experiments on HSI and S&P demonstrated that the deep
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Figure 2 The performance of various trading strategies on S&P500. The notations are the same
as in Fig. 1.

Q-trading system consistently outperforms the BH baseline, as well as the RRL
system. Despite these interesting results, our study is still in a preliminary stage.
In future work, we will investigate the contributions of other features, particularly

the ones from financial research.
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