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Abstract

Algorithmic trading is a hot topic in machine learning. Compared to other
methods, reinforcement learning (RL), particularly Q-learning, can learn decision
rules directly with reasonable reward, and therefore is suitable for learning trading
strategies. Recently, Q-learning based on deep neural models, also known as deep
Q-learning, has been successfully applied to some challenging tasks like game
playing and robot motion. In this paper, we propose to employ deep Q-learning
to build an end-to-end deep Q-trading system which can automatically determine
what position to hold at each trading time. Our experimental results show that
the deep Q-trading system can outperform the buy-and-hold strategy as well as
the strategy learned by recurrent reinforcement learning (RRL) that was known
to be more effective than Q-learning.
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1 INTRODUCTION
Algorithmic trading for stocks is attractive for both researchers and market prac-

titioners. Existing approaches for algorithmic trading can be categorized into

knowledge-based methods and machine learning (ML) based methods. Knowledge-

based methods design trading strategies based on either financial research or trading

experience; ML-based methods, in contrast, learn trading strategies from the mar-

ket data in history. An obvious advantage of the ML-based methods is that they

can discover profitable patterns that are yet unknown to people. Refer to the review

paper [1] for more details about algorithmic trading.

Among various ML methods, reinforcement learning (RL) is particularly inter-

esting, especially the Q-learning approach. First, Q-learning does not model the

market, instead of focusing on the benefit (Q value) associated with actions. This

avoids the errors caused by any market model. Second, Q-learning is suitable to

do online learning, which enables quick adaptation to new market status. Third,

Q-learning pays attention to long-term benefit rather than instantaneous reward,

which is congruent with the goal of stock trading, maximizing long-term profit. Cur-

rently, reinforcement learning has been applied in financial analysis and investment

by a multitude of researchers. For instance, Moody et al. [2] proposed a recurrent re-

inforcement learning (RRL) algorithm to optimize security portfolios. Gao et al. [3]

used the relative risk-adjusted profit (sharp ratio) as performance function to train

the trading system based on Q-learning. Du et al. [4] compared the performance of

Q-learning and RRL, and reported that RRL achieved better performance in stock

trading. Lee et al. [5] proposed an approach that incorporates multiple Q-learning

agents to perform pricing and selection for stocks.
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Recently, deep learning [6] has achieved remarkable success in a wide range of

research areas, including speech processing, image processing, and natural language

processing [7]. An important advantage of deep learning is that it can learn high-

level features from raw signals layer by layer. Deep learning has been combined with

the Q-learning recently, leading to a powerful deep Q-learning method. In a netshell,

deep Q-learning is a Q-learning with a deep model (e.g., deep neural network) to

identify status. Deep Q-learning has shown great power in a multitude of tasks.

For example, it has been utilized to learn to play Atari games and the GO game,

which achieved very impressive performance [8, 9]. To the authors’ best knowledge,

this powerful approach has not been applied to stock trading tasks, although deep

models are supposed to be useful to discover market status from the noisy raw data.

In this paper, we apply the deep Q-learning approach to algorithmic trading. Our

goal is to build a deep Q-trading system that determines when to buy and sell,

based on the current and historical market data. Our preliminary experiments on

the Hong Kong and US stock markets demonstrate that the deep Q-trading system

is highly effective.

The paper is organized as follows: Section 2 describes the deep Q-learning ap-

proach. Section 3 presents the implementation details of the deep Q-trading system.

Section 4 reports the experimental results, and Section 5 concludes the paper and

discusses the future work.

2 DEEP Q-Learning
This section first briefly introduces the Q-learning algorithm and its application to

stock trading, and then extends to the deep Q-learning approach.

2.1 Q-learning

Reinforcement learning is a general framework to deal with sequential decision tasks.

At each time step t, RL observes the status st of the environment, takes an action

at, and receives some reward rt from the environment. With sufficient pairs of

(action,reward), RL can learn an optimal decision policy π∗ that maximizes the

long-term accumulated reward
∑
t rt.

Formally, Q-learning learns a value function Q(s, a) that represents the expected

accumulated reward when taking an action a when the environment status is s.

This is formulated as follows:

Qπ(s, a) = E[Rt|st = s, at = a, π], (1)

where π is the decision policy, and Rt is the accumulated reward given by:

Rt =
∑
t

γt
′−trt′ . (2)

where γ < 1.0 is a discount factor to weight future reward. The goal of the learning

is to find the best policy π∗ that maximizes the expected return. The corresponding

optimal Q-function is given by:
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Q∗(s, a) = maxπQπ(s, a). (3)

The Q-function holds a nice property formulated as the Bellman equation:

Q∗(s, a) = rt + γmax
a′

Q∗(s′, a′) (4)

where s′ is the new status after taking action a under status s. The main idea behind

the Q-learning is that we can iteratively approximate the Q-function at each (s, a)

using the Bellman equation, and this iterative update will converge to the optimal

Q-function Q∗(s, a).

2.2 Q-learning with deep neural networks

In the case of continuous state s, a neural network is often used to approximate the

value Q(s, a). This network is often referred as a Q-network [10]. The Q-network

can be trained by minimizing the Q prediction error, i.e., the difference between the

left-hand and right-hand side of Eq. (4). The loss function is formulated as follows:

L(θi) = E(s,a)∼ρ(·)[(y −Q(s, a; θi))
2], (5)

where i denotes the training iteration, θ denotes the parameters of the Q-network.

The training examples are in the form of (s,a,r,s′), and ρ(s, a) denotes the distri-

bution of the training examples. Additionally, y is the prediction of Q(s, a) given

by the Bellman equation:

y = r + γmax
a′

Q∗(s′, a′; θi−1)|s, a. (6)

Note that yt is computed with θi−1, the weight of the previous iteration. This loss

function can be minimized by the stochastic gradient descend (SGD) algorithm.

The gradient with respect to θ is given by:

∇θiL(θi) = E(s,a)∼ρ(·)[(r + γmax
a′

Q∗(s′, a′; θi−1)

−Q(s, a; θi))∇θiQ(s, a; θi)]
(7)

where ∇θiQ(s, a; θi) can be easily computed by the back-propagate (BP) algorithm.

If the Q-network involves multiple layers, we obtain the deep Q-learning architec-

ture. It has been well-known that deep learning is capable of learning hierarchical

patterns, and the patterns learned by the high-level layers tend to be abstract and

invariant against unexpected disturb. This abstraction and invariance is essentially

important for stock trading. In stock markets, there is vast raw and noisy informa-

tion (e.g., price, volume, correlation and auto-correlation among securities, special
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events of enterprises, macro economic indicators,...). This information forms the

status of the market, but it is fairly challenging to identify the market status from

these noisy information. With deep Q-learning, abstract and robust market pat-

terns can be extracted from the vast, noisy and heterogenous information. These

patterns form a much better representation for the market status s than the raw

input features. As a summary, deep Q-learning involves a deep learning component

that learns the market status s, and a Q-learning component that learns the value

function Q(s, a), although these two components are integrated as an entire deep

Q-network in the real implementation.

3 Deep Q-trading system

In this section, we use the deep Q-learning algorithm to build an end-to-end al-

gorithmic trading system. We consider a simple trading task that operates on a

single security, and at each trading day t, only one operation (action) is allowed.

The action at has three options: long (1), neutral (0) or short (−1), and a reward

rt is obtained. Our task is to learn a deep Q-function Q(s, a) that maximizes the

long-term accumulated profit
∑
t′ γ

t′−trt′ . No transaction cost is considered in this

study. This trading approach based on the deep Q-learning algorithm is referred to

as deep Q-trading.

In principle, the learning can be conducted by minimizing the loss function in Eq.

(5) with SGD or any other gradient-based method, with the gradient given by Eq.

(7). In practice, however, several issues need to be addressed before the learning can

be successful. Firstly, since only one action is taken at each trading day, the total

training data is quite limited; secondly, the Q-learning is intrinsically unstable [8];

thirdly, an online learning is required so that the Q-function can be quickly adapted

to new status of the market. We describe some implementation details of our deep

Q-trading system in what follows.

3.1 Online learning

A particular reason why many supervised learning approaches failed in stock market

prediction and algorithmic trading is that the market is very volatile. This volatility

is not only caused by short-term noise, e.g., unexpected events, but also by the in-

trinsic evolution of the market fundamentals, such as economic growth, technology

development, population structure, etc. This means any models trained with histor-

ical data, no matter how accurate they are on the training set, will ultimately fail

in new market conditions. An online learning approach that can quickly adapt the

model to new market conditions is therefore essentially important for a practical

trading system.

Fortunately, it is easy to implement an online version of the deep Q-trading sys-

tem. We first train an initial deep Q-network using a small historical data, and then

re-run the deep Q-learning from the beginning. At each trading day, a new training

example (st,at,rt,st+1) is added to a buffer that consists of recent trading history.

The examples in the buffer are then used as a mini-batch to update the Q-network

following Eq. (7).
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3.2 Update scheme

It is well-known that Q-learning is unstable, particularly with deep neural network-

s. One reason is that a small change on the Q-network may change the Q-value

significantly, hence change the decision policy as well. This is because that both

the present Q value Q(s, a) and estimated Q value y = r + γmaxa′ Q
∗(s′, a′) are

computed by a single Q-network.

We design two approaches to mitigate this problem. First, notice that only three

actions are allowed to be chosen in the trading task, and after each trading day, the

reward associated with each action is actually known. This means that we don’t

need a random exploration to sample an action as in many reinforcement learning

tasks [8]; instead we can emulate all the three actions to update the Q-network.

This not only enriches the training data, but makes the training more stable.

Another method is to use a separate target network Q̃ to compute the estimated

Q value y, as suggested by Mnih [8]. The gradient in Eq. (7) is then changed to:

∇θiLi(θi) = Es,a∼ρ(·)[(r + γmax
a′

Q̃(s′, a′; θ̃)

−Q(s, a; θi))∇θiQ(s, a; θi)].
(8)

The target network Q̃ is updated by interpolating with the latest Q, as follows:

θ̃ ← τθ + (1− τ)θ̃ (9)

where τ is the interpolation factor. Note that the decision of the trading is made

based on the target network Q̃, rather then the present network Q.

3.3 Reward function

Reward function is another key ingredient of the deep Q-trading system. Most of

previous researches on ML-based methods often use instantaneous reward such as

daily profit, either in an additive form rt = zt − zt−1 or in a productive form

rt = zt/zt−1 − 1, where zt is the price of the target equity at the t-th day. This

instantaneous reward, however, is not suitable for deep Q-learning, as the instanta-

neous reward is quite noisy so it can not provide reliable supervision for the model

training. Furthermore this reward is not consistent with our goal of maximizing

long-term profit[1]. We experimented with several long-term reward functions and

found that the accumulated wealth over n days in the past was a good candidate

for deep Q-trading. Formally, the reward is given by

r = (1 + sgn(at)
zt − zt−1
zt−1

)
zt−1
zt−n

, (10)

where at ∈ {−1, 0, 1} and sgn(·) is the sign function.

[1]Q-learning indeed targets for a long-term reward. Specifically, it relies on the

Bellman equation to accumulate a series of discounted instantaneous reward to a

long-term reward. However, the factorization assumption is fair strong and may not

hold in practical usage.
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4 EXPERIMENTS
The proposed deep Q-trading system is evaluated on two stock markets: Hong Kong

and US, and choose HSI and S&P500 as the trading target. we first describe the data

and configurations of the experiment, and then present the performance results.

4.1 Data and settings

The database used in the experiment involves 15 years of daily data of HSI

and S&P500 downloaded from Yahoo finance, ranging from 01/01/2001 through

12/31/2015. This database is divided into a training data set (01/01/2001 -

12/31/2004) and a test set (01/01/2005 - 12/31/2015). Only the daily closing price

is used in this study, though other features can be easily incorporated into the model

and are under investigation.

We compare the deep Q-trading system with two baselines: the buy-and-hold

(BH) strategy and the recurrent reinforcement learning (RRL) system [2, 11]. For

deep Q-trading, the training dataset is used to initialize the deep Q-network, and

then the system runs in an online fashion where trading decision making and model

adaptation are conducted simultaneously. For the Q-learning part, the discount

factor in Eq. (7) is set to γ = 0.85, and the reward window n in Eq. (10) is set

to 100. For the deep-learning part, the architecture of the deep Q-network involves

four layers in total (two are hidden), with the number of units set to 200, 100, 50 and

3 respectively. The input units (features) are composed by the delta price zt− zt−1
of 200 days in the past, and the output units correspond to the three actions in

trading. The learning rate for Q-network is 1e− 4, and the training stops after 10

iterations. The interpolation factor τ in Eq. (9) is set to 0.0003, and the minibatch

involves the training examples of the past 64 days. Note that the training examples

involve all the 3 actions and their rewards at each trading day, so the minibatch

size is actually 192.

As for the RRL system, the code provided by Yupu Song and Kartik Shetty is

used to build the system[2]. Note that the original setting of the RRL system is

based on monthly prices. For a fair comparison, we migrate the algorithm to daily

prices. The input features are delta prices of the past 120 days, and the learning

rate is set to 0.005. The maximum training epoch is set to 100. These parameters

have been chosen to optimize and balance the performance of the RRL system on

both of the two data sets (HSI and S&P 500). The RRL system is trained offline

with the training data and then applied to the test data without any adaptation.

4.2 Experimental results

The results with the three trading approaches (BH, RRL, and deep Q-trading) on

the HSI test set are presented in Fig. 1, and the results on the S&P500 test set

are presented on Fig. 2. In each figure, the top plot reports the performance in

terms of accumulated wealth (starting from the initial wealth 1.0), and the bottom

plot presents the positions held by the deep Q-trading system. It can be seen that

on both of the two test sets, the deep Q-trading system accumulates clearly more

wealth than the other two systems. More detailed numerical comparison is shown

[2]https://github.com/MagicEthan/CS534 AI Proj
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HSI S&P500
BH DQT RRL BH DQT RRL

Accumulated
Return(%)

154 350 174 169 214 141

Sharp Ratio 0.28 0.59 0.89 0.34 0.45 1.23

Maximum
Drawdown(%)

65 42 55 57 31 43

Table 1 Comparison of trading performance

in Table 1, where we report three widely used measures for stock trading: accumu-

lated return, sharp ratio and maximum drawdown. It can be seen that our trading

system outperforms the other two methods in terms of total return and maximum

drawdown, but performs worse than the the RRL system in terms of sharp ratio.

This is not surprising because the RRL system uses sharp ratio as its reward signal.

Comparing deep Q-trading and RRL, it seems that the former performs more

consistently than the later: deep Q-trading performs well on both the two markets,

while RRL performs poorly on S&P500. This advantage of deep Q-trading can be

attributed to two advantages. One of them is the ability to detect the status of the

market from the raw and noisy data. And the another is the online nature that

adapts itself to new market status quickly. More interesting observations can be

found in the two position plots. From the positions held by the Q-trading system, it

seems that it has learned how to take different actions in different market situations.

For example, in a downside market, it learns selling is more profitable than holding,

and thus tends to hold a short position. This sensitivity against market status can

be largely attributed to the power of the deep Q-network in discovering the status

of the market from the vast and noisy historical price signals.
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Figure 1 The performance of various trading strategies on HSI. The top plot shows the
performance on the test set, evaluated in terms of accumulated wealth. The bottom plot shows
the position held by the deep Q-trading system.

5 CONCLUSION
In this paper we propose a novel deep Q-trading method that applies the deep Q-

learning approach to algorithmic trading. Compared to existing methods, deep Q-

trading is able to detect market status from raw and noisy data, and pays attention

to long-term returns. Our experiments on HSI and S&P demonstrated that the deep
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Figure 2 The performance of various trading strategies on S&P500. The notations are the same
as in Fig. 1.

Q-trading system consistently outperforms the BH baseline, as well as the RRL

system. Despite these interesting results, our study is still in a preliminary stage.

In future work, we will investigate the contributions of other features, particularly

the ones from financial research.
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