

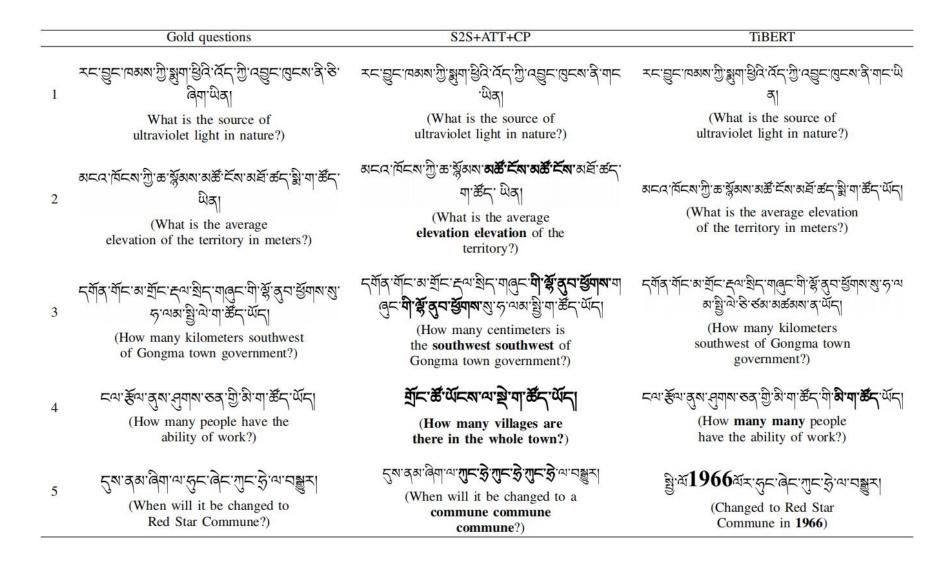
ZiXi Yan 2022/06/10

- To better express the semantic information of Tibetan and reduce the problem of OOV, this paper uses the unigram language model of Sentencepiece to segment Tibetan words and constructs a vocabulary that can cover 99.95% of the words in the corpus.
- To further promote the development of various downstream tasks of Tibetan natural language processing, this paper collected a large-scale Tibetan dataset and trained the monolingual Tibetan pre-trained language model named TiBERT.
- To evaluate the performance of TiBERT, this paper conducts comparative experiments on the two downstream tasks of text classification and question generation. The experimental results show that the TiBERT is effective.

- Tibetan data from 21 Tibetan websites including Tibet Peo ple's Network and Qinghai Provincial People's Government Network
- The data contains knowledge in various fields such as current affairs, economy, technology, society, law, sports, life, nature, culture, geography, art, military, educa_x0002_tion, history, and people

TABLE IV PERFORMANCES ON DOCUMENT CLASSIFICATION

Model	Accuracy(%)	Macro-Precision(%)	Macro-Recall(%)	Macro-F1(%)
CNN(syllable)	61.51	59.39	56.65	57.34
CINO-large	-	-	-	68.6
Transformer	28.63	41.21	28.63	28.79
TextCNN	61.71	61.65	61.71	61.53
DPCNN	62.91	63.61	62.91	61.17
TextRCNN	63.67	64.37	63.67	62.81
TiBERT	71.04	71.20	71.04	70.94
TiBERT+CNN	70.39	70.54	70.39	70.23



Quantifying Language Variation Acoustically with Few Resources

- 10 words (armen: 'arms' ,deeg: 'dough' , draden: 'wires' , duiven: 'pigeons' ,naalden: 'needles' , ogen: 'eyes' , pijpen: 'pipes' ,tangen: 'pliers' , volk: 'people' , vuur: 'fire')
- pro nounced in 106 locations in the Netherlands. On average, the duration of these 10 words is only 6.3 seconds for each location.

Quantifying Language Variation Acoustically with Few Resources

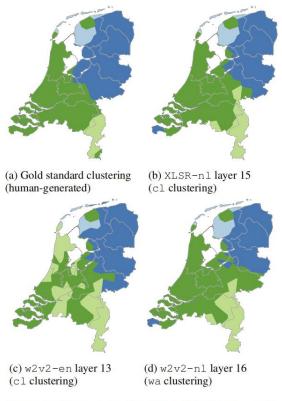


Figure 1: Cluster maps visualizing four clusters on the map of the Netherlands. Separate clusters are indicated by the different colours.

Automatic Pronunciation Assessment using Self-Supervised Speech Representation Learning

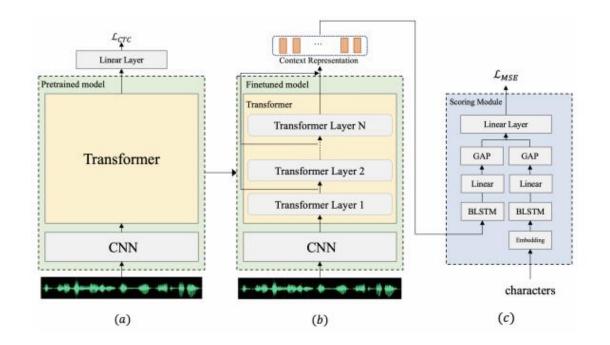


Figure 1: Overall procedure of the proposed method for automatic pronunciation assessment based on SSL models.

Automatic Pronunciation Assessment using Self-Supervised Speech Representation Learning

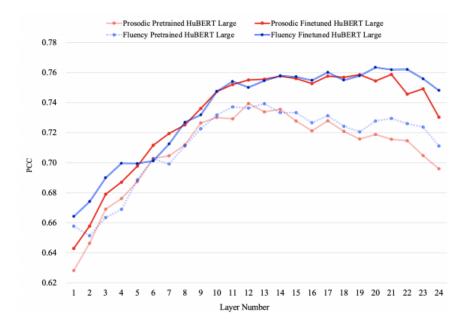


Figure 3: *PCCs* when using the hidden states of different transformer layers of the fine-tuned HuBERT Large model as input to the BLSTM scoring module.

Feature	KESL	Speechocean762	
	Holistic	Fluency	Prosodic
Local	0.56	0.60	0.62
Layer 20	0.81	0.76	0.76
All Layers (Proposed)	0.82	0.78	0.77

Table 2: Comparison of the performance of local representation of a convolutional layer, the contextual representation, and layer-wise contextual representation of the transformer layers in HuBERT Large model.

CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX

The Gumbel-Max trick (Gumbel, 1954; Maddison et al., 2014) provides a simple and efficient way to draw samples z from a categorical distribution with class probabilities π :

$$z = \text{one_hot}\left(\arg\max_{i} \left[g_i + \log \pi_i\right]\right) \tag{1}$$

where $g_1...g_k$ are i.i.d samples drawn from Gumbel $(0, 1)^{\Gamma}$. We use the softmax function as a continuous, differentiable approximation to $\arg \max$, and generate k-dimensional sample vectors $y \in \Delta^{k-1}$ where

$$y_i = \frac{\exp((\log(\pi_i) + g_i)/\tau)}{\sum_{j=1}^k \exp((\log(\pi_j) + g_j)/\tau)} \quad \text{for } i = 1, ..., k.$$
(2)

The density of the Gumbel-Softmax distribution (derived in Appendix B) is:

$$p_{\pi,\tau}(y_1,...,y_k) = \Gamma(k)\tau^{k-1} \left(\sum_{i=1}^k \pi_i / y_i^{\tau}\right)^{-k} \prod_{i=1}^k \left(\pi_i / y_i^{\tau+1}\right)$$
(3)

This distribution was independently discovered by Maddison et al. (2016), where it is referred to as the concrete distribution. As the softmax temperature τ approaches 0, samples from the Gumbel-Softmax distribution become one-hot and the Gumbel-Softmax distribution becomes identical to the categorical distribution p(z).

CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX

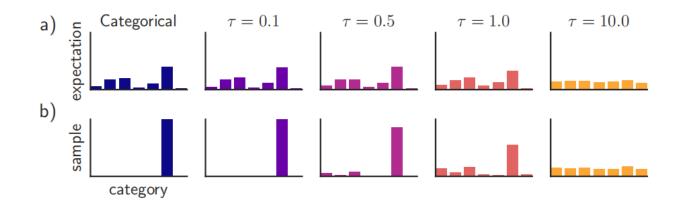


Figure 1: The Gumbel-Softmax distribution interpolates between discrete one-hot-encoded categorical distributions and continuous categorical densities. (a) For low temperatures ($\tau = 0.1, \tau = 0.5$), the expected value of a Gumbel-Softmax random variable approaches the expected value of a categorical random variable with the same logits. As the temperature increases ($\tau = 1.0, \tau = 10.0$), the expected value converges to a uniform distribution over the categories. (b) Samples from Gumbel-Softmax distributions are identical to samples from a categorical distribution as $\tau \to 0$. At higher temperatures, Gumbel-Softmax samples are no longer one-hot, and become uniform as $\tau \to \infty$.

CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX

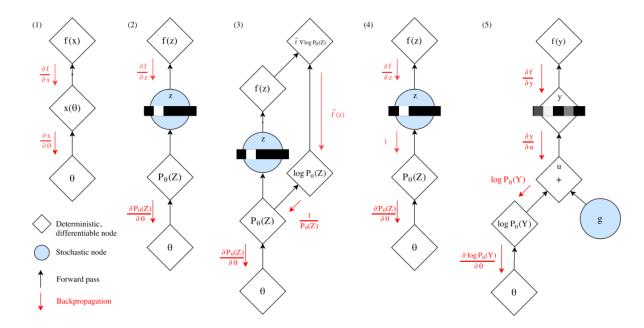


Figure 2: Gradient estimation in stochastic computation graphs. (1) $\nabla_{\theta} f(x)$ can be computed via backpropagation if $x(\theta)$ is deterministic and differentiable. (2) The presence of stochastic node z precludes backpropagation as the sampler function does not have a well-defined gradient. (3) The score function estimator and its variants (NVIL, DARN, MuProp, VIMCO) obtain an unbiased estimate of $\nabla_{\theta} f(x)$ by backpropagating along a surrogate loss $\hat{f} \log p_{\theta}(z)$, where $\hat{f} = f(x) - b$ and b is a baseline for variance reduction. (4) The Straight-Through estimator, developed primarily for Bernoulli variables, approximates $\nabla_{\theta} z \approx 1$. (5) Gumbel-Softmax is a path derivative estimator for a continuous distribution y that approximates z. Reparameterization allows gradients to flow from f(y) to θ . y can be annealed to one-hot categorical variables over the course of training.

Thanks