
Chenhao Zhang

2013/04/08



Outline

� Introduction 

�The FisherVoice based SUSR framework

�Experimental Results and Analysis

�Conclusions



Introduction
� Short Utterance Speaker Recognition (SUSR)

� In some situations, only a short utterance containing only 
one or two words is available

� Short utterances can provide a better user experience

� The current technologies are unsatisfactory when the test 
speech is very short

� GMM-UBM / GMM-SVM
� Dominant speaker recognition Technologies

� The classic and effective methods when the test data is 
enough

� The performance degrades sharply when the test speech is 
shortened



The Influence of the Length of Test Speech
� The length of the test data is a big factor that 

influences the performance of speaker recognition

� R. Vogt, S. Sridharan and Michael Mason. IEEE Trans 
on ASLP  2010. On NIST SRE 2005 Database

Valid length EER(%) MinDCF (10-2)

Sufficient 6.34 2.93

20 Seconds 8.87 3.91

10 Seconds 12.15 4.89

5 Seconds 16.99 6.16

2 Seconds 23.89 7.94

< 2 Seconds >35 >10



Existing Solutions
� Factor Analysis Subspace Estimation

� Decrease the number of redundant model parameters 
to develop dominant speaker models [P. Kenny 2005]

� Speech Segments Selection

� Select segments with higher discriminability on speaker 
characteristics [M. Nosratighods 2010]

� Score Fusion

� Weighted bilateral scoring [A. Malegaonkar 2008]

� Most of the above mentioned approaches show 
improvements with test length among 5~10 seconds. 



Feature Combination
� The same speaker recognition system with different 

kinds of features will perform quite differently
� Mel Frequency Cepstral Coefficients (MFCC)

� For short utterance, the information of one kind 
feature will not be enough
� One single kind of feature can provide relatively 

enough speaker information to perform speaker 
recognition when the test utterance is long enough

� The combination of different features is useful to 
improve the recognition performance in many 
research fields
� Feature Fusion. [J. Yang, 2003]



Feature Fusion Method

� Target: 2 aspects
1. De-correlate the concatenated feature vectors into 

individual ones from multiple feature streams

2. Eliminate the coefficients with redundant and unimportant 
information

� Linear Discriminant Analysis (LDA)
� Maximize the between-class covariance and simultaneously 

minimizing the within-class covariance

� Problem: The Singular Matrix

� The Fishervoice based method

� Principal Component Analysis (PCA) plus LDA



The FisherVoice based SUSR Framework
� Two Key Parts

1. The Fishervoice based dimensionality reduction

� combine different kinds of features

2. The GMM-UBM based speaker recognition



The Fishervoice based Dimensionality Reduction



Linear Discriminant Analysis 

� For the original data set X, the within-class scatter 
matrix  and the between-class scatter matrix are:

� LDA maximizes the criterion as:



The GMM-UBM based speaker recognition



Database

� Database: SUD12
� 60 Chinese speakers: 30 males and 30 females

� 163 Chinese sentences:
� 100 long sentences for train / 63 short sentences for test

� The Distribution of the length of the test utterances

� Recorded in clean environments using a microphone at 
8 kHz sampling rate with 8-bit precision

Length in second # of Sentences Percent (%)
less than 0.5 38 60.32

0.5 to 1.0 15 23.81
1.0 to 2.0 10 15.87



Experimental Conditions

� Three kinds of features were and they are:

� MFCC - 20-dimensional Mel Frequency Cepstral 
Coefficients (MFCC)

� 30 Mel filter banks.

� PLAR - 20-dimensional Perceptual Log Area Ratio 
(PLAR) Be robust to the noise and other environments 
[19], is derived from the Perceptual Linear Prediction 
feature (PLP) [20].

� LPCC - 12-dimensional Linear Predictive Cepstrum 
Coefficients (LPCC)

� 52-dimensional feature vector



Results and Analysis

EER of the Fishervoice based method as a function of number of dimensions



Results and Analysis

Feature EER (%)

MFCC 26.52

PLAR 22.98

LPCC 23.44

Concatenated Feature 28.78

LDA based 20.03

Fishervoice based 19.21



Conclusions

� The feature fusion method can improve the 
performance when the test utterance is short.

� The proposed Fishervoice based method can achieve a 
better result compared with the traditional features and 
the LDA fusion method in short test utterance 
situations.

� The feature domain method can be combined with 
methods from other domains to achieve a better 
performance for SUSR
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