<<Text Understanding from Scratch>>

Author & Publication

Xiang Zhang, Yann LeCun Computer Science Department, Courant Institute of Mathematical Sciences, New York University
arXiv:1502.01710v1 [cs.LG] 5 Feb 2015

Abstract

This article demontrates that we can apply deep learning to text understanding from characterlevel inputs all the way up to abstract text concepts, using temporal convolutional networks(LeCun et al., 1998) (ConvNets). We apply ConvNets to various large-scale datasets, including ontology classification, sentiment analysis, and text categorization. We show that temporal ConvNets can achieve astonishing performance without the knowledge of words, phrases, sentences and any other syntactic or semantic structures with regards to a human language. Evidence shows that our models can work for both English and Chinese.

Text understanding

•What does Text understanding consist?

- Consist in reading texts formed in natural languages.
- Consist in determining the explicit or implicit meaning of each elements such as words, phrases, sentences and paragraphs.
- Consist in making inferences about the implicit or explicit properties of these texts.

Text understanding

•Disadvantages of Traditional methods of Text understanding

- **Prior knowledge** is required and not cheap.
 - (They need to pre-define a dictionary of interested words, etc.)
- Work well enough when applied to a narrowly defined domain.
- Specialized to **a particular language**.
 - (They need structural parser for specific language.)
- After applying word2vector, there are still some engineered layers to represent structures such as words, phrases and sentences

- Contributions of this paper
 - ConvNets do not require knowledge of words working with characters is fine.
 - ConvNets do not require knowledge of syntax or semantic structures – inference directly to high-level targets is fine.

Motivation of this paper

- Our approach is partly inspired by ConvNet's success in computer vision. It has outstanding performance in various image recognition tasks.
- These successful results usually involve some end-to-end ConvNet model that learns hierarchical representation from raw pixels.
- ConvNets Similarly, we hypothesize that when trained from raw characters, temporal ConvNet is able to learn the hierarchical representations of words, phrases and sentences in order to understand text.

Character quantization

- Encode 69 characters: abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'''/\[_@#\$%^ & * ~`+-=<>()[]{}
- "a": {1,0,0,...,0} "b":{0,1,...,0} ")": {0,...,1,0,0,0,0}
 The dimension of these vectorc is 69.
 Other characters including blank characters are quantized

as all-zero vectors.

Inspired by (RSTM)work, we quantize characters in backward order.

The binary expression of "International Conference on Machine Learning"

•Model Design

Figure 2. Illustration of our model

The input have number of frames equal to 69 due to our character quantization method, and the length of each frame is dependent on the problem.

Model Design

Table 1. Convolutional layers used in our experiments. The convolutional layers do not use stride and pooling layers are all nonoverlapping ones, so we omit the description of their strides.

Layer	Large Frame	Small Frame	Kernel	Pool
1	1024	256	7	3
2	1024	256	7	3
3	1024	256	3	N/A
4	1024	256	3	N/A
5	1024	256	3	N/A
6	1024	256	3	3

Model Design

Table 2. Fully-connected layers used in our experiments. The number of output units for the last layer is determined by the problem. For example, for a 10-class classification problem it will be 10.

Layer	Output Units Large	Output Units Small
7	2048	1024
8	2048	1024
9	Depends on	the problem

- Data Augmentation using Thesaurus
 - Image recognition a model should have some controlled invariance towards changes in translating, scaling, rotating and flipping of the input image.
 - Similarly, in speech recognition we usually augment data by adding artificial noise background and changing the tone or speed of speech signal.
 - In terms of texts, the most natural choice in data augmentation for us is to replace words or phrases with their synonyms because the exact order of characters may form rigorous syntactic and semantic meaning.

- Comparison Model
 - Bag of Words

The bag-of-words model is pretty straightforward. For each dataset, we count how many times each word appears in the training dataset, and choose 5000 most frequent ones as the bag. Then, we use multinomial logistic regression as the classifier for this bag of features.

– wore2vec

As for the word2vec model, we first ran k-means on the word vectors learnt from Google News corpus with k = 5000, and then use a bag of these centroids for multinomial logistic regression. This model is quite similar to the bag-of-words model in that the number of features is also 5000.

DBpedia Ontology Classification

Table 3. DBpedia ontology classes. The numbers contain only samples with both a title and a short abstract.

Class	Total	Train	Test
Company	63,058	40,000	5,000
Educational Institution	50,450	40,000	5,000
Artist	95,505	40,000	5,000
Athlete	268,104	40,000	5,000
Office Holder	47,417	40,000	5,000
Mean Of Transportation	47,473	40,000	5,000
Building	67,788	40,000	5,000
Natural Place	60,091	40,000	5,000
Village	159,977	40,000	5,000
Animal	187,587	40,000	5,000
Plant	50,585	40,000	5,000
Album	117,683	40,000	5,000
Film	86,486	40,000	5,000
Written Work	55,174	40,000	5,000

The length of input used was $l_0 = 1014$.

DBpedia Ontology Classification

Table 4. DBpedia results. The numbers are accuracy.					
Model	Thesaurus	Train	Test		
Large ConvNet	No	99.95%	98.26%		
Large ConvNet	Yes	99.81%	98.40%		
Small ConvNet	No	99.70%	97.99%		
Small ConvNet	Yes	99.64%	98.15%		
Bag of Words	No	96.62%	96.43%		
word2vec	No	89.64%	89.41%		

Experiment Result

Amazon Review Sentiment Analysis

Table 5. Amazon review datasets. Column "total" is the total number of samples for each score. Column "chosen" is the number of samples whose length is between 100 and 1000. Column "full" and "polarity" are number of samples chosen for full score dataset and polarity dataset, respectively.

	Total	Chosen	Full	Polarity
1	2,746,559	2,206,886	1,250,000	2,200,000
2	1,791,219	1,290,278	1,250,000	1,250,000
3	2,892,566	1,975,014	1,250,000	0
4	6,551,166	4,576,293	1,250,000	1,250,000
5	20,705,260	16,307,871	1,250,000	2,200,000

The length of input used was $l_0 = 1014$.

Amazon Review Sentiment Analysis

Table 6. Result on Amazon review full score dataset. The numbers are accuracy.

Model	Thesaurus	Train	Test
Large ConvNet	No	93.73%	73.28%
Large ConvNet	Yes	83.67%	71.37%
Small ConvNet	No	82.10%	70.12%
Small ConvNet	Yes	84.42%	68.18%
Bag of Words	No	52.13%	51.93%
word2vec	No	38.22%	38.25%

Table 7. Result on Amazon review polarity dataset. The numbers are accuracy.

Model	Thesaurus	Train	Test
Large ConvNet	No	99.71%	96.34%
Large ConvNet	Yes	99.51%	96.08%
Small ConvNet	No	98.24%	95.84%
Small ConvNet	Yes	98.57%	96.01%
Bag of Words	No	88.46%	85.54%
word2vec	No	75.15%	73.07%

Experiment Result

Yahoo! Answers Topic Classification

Category	Total	Train	Test
Society & Culture	295,340	140,000	5,000
Science & Mathematics	169,586	140,000	5,000
Health	278,942	140,000	5,000
Education & Reference	206,440	140,000	5,000
Computers & Internet	281,696	140,000	5,000
Sports	146,396	140,000	5,000
Business & Finance	265,182	140,000	5,000
Entertainment & Music	440,548	140,000	5,000
Family & Relationships	517,849	140,000	5,000
Politics & Government	152,564	140,000	5,000

Table 8. Yahoo! Answers topic classification dataset

The length of input used was $l_0 = 1014$.

•Yahoo! Answers Topic Classification

Table 9. Results on	Yahoo!	Answers	dataset.	The	numbers	are
accuracy.						

Model	Thesaurus	Train	Test
Large ConvNet	No	71.76%	69.84%
Large ConvNet	Yes	72.23%	69.92%
Small ConvNet	No	70.10%	69.92%
Small ConvNet	Yes	70.73%	69.81%
Bag of Words	No	66.75%	66.44%
word2vec	No	58.84%	59.01%

Experiment Result

Text Understanding From ScratchNews Categorization in English

Table 10. AG's news corpus. Only	/ categories used ar	e listed.
----------------------------------	----------------------	-----------

Category	Total	Train	Test
World	81,456	40,000	1,100
Sports	62,163	40,000	1,100
Business	56,656	40,000	1,100
Sci/Tech	41,194	40,000	1,100

The length of input used was $l_0 = 1014$.

Text Understanding From ScratchNews Categorization in English

Model	Thesaurus	Train	Test
Large ConvNet	No	99.00%	91.12%
Large ConvNet	Yes	99.00%	91.64%
Small ConvNet	No	98.94%	89.32%
Small ConvNet	Yes	98.97%	90.39%
Bag of Words	No	88.35%	88.29%
word2vec	No	85.30%	85.28%

Table 11. Result on AG's news corpus. The numbers are accuracy

Experiment Result

Text Understanding From ScratchNews Categorization in Chinese

Table 12. Sogou News dataset					
Category	Total	Train	Test		
Sports	645,931	150,000	10,000		
Finance	315,551	150,000	10,000		
Entertainment	160,409	150,000	10,000		
Automobile	167,647	150,000	10,000		
Technology	188,111	150,000	10,000		

The length of input used was $l_0 = 1014$.

- News Categorization in Chinese
 - The romanization or latinization form we have used is Pinyin, which is a phonetic system for transcribing the Mandarin pronunciations.
 - During this procedure, we used the pypinyin package combined with jieba Chinese segmentation system. The resulting Pinyin text had each tone appended their finals as numbers between 1 and 4.

Text Understanding From ScratchNews Categorization in Chinese

Model	Thesaurus	Train	Test
Large ConvNet	No	97.64%	97.05%
Small ConvNet	No	97.45%	97.03%
Bag of Words	No	95.69%	95.46%

Table 13. Result on Sogou News corpus. The numbers are accuracy

Experiment Result

Some ideas

- 1. This model is successfully applied in Text Understanding, can we apply this model in language model? Letter embedding?
- 2. Recent research shows that it is possible to generate text description of images from the features learnt in a deep image recognition model. The models in this article show very good ability for understanding natural languages, and we are interested in using the features from our model to generate a response sentence in similar ways?
- 3. Natural language in its essence is time-series in disguise. Can we extend application for our approach towards time-series data?

Some ideas

- 4. In this article we only apply ConvNets to text understanding for its semantic or sentiment meaning.
 Can we extend this approach towards NER or POS?
- 5. Can we learn from symbolic systems such as mathematical equations, logic expressions or programming languages?
- 6. Can we extend this approach towards other tasks, not just classification task?

Some ideas

 7. The same idea came in the paper called <<Deep Speech: Scaling up end-to-end speech recognition>>.

We present a state-of-the-art speech recognition system developed using end-toend deep learning. Our architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, our system does not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learns a function that is robust to such effects. We do not need a phoneme dictionary, nor even the concept of a "phoneme." Key to our approach is a well-optimized RNN training system that uses multiple GPUs, as well as a set of novel data synthesis techniques that allow us to efficiently obtain a large amount of varied data for training. Our system, called Deep Speech, outperforms previously published results on the widely studied Switchboard Hub5'00, achieving 16.0% error on the full test set. Deep Speech also handles challenging noisy environments better than widely used, state-of-the-art commercial speech systems.

Thank You !

